Skip to main content
×
×
Home

The impacts of deglaciation and human activity on the taxonomic structure of prokaryotic communities in Antarctic soils on King George Island

  • E.V. Pershina (a1) (a2), E.A. Ivanova (a1) (a2) (a3), E.V. Abakumov (a2) and E.E. Andronov (a1) (a2) (a3)
Abstract

The soil microbiome was investigated at environmentally distinct locations on King George Island in the South Shetland Islands (Antarctic Peninsula) using 16 S rRNA gene pyrosequencing. The taxonomic composition of the soil prokaryotes (bacteria and archaea) was evaluated at three sites representing human-disturbed soils (Bellingshausen Station) and soils undergoing different stages of deglaciation (fresh and old moraines located near Ecology Glacier). The taxonomic analysis revealed 20 bacterial and archaeal phyla, among which Proteobacteria (29.6%), Actinobacteria (25.3%), Bacteroidetes (15.8%), Cyanobacteria (11.2%), Acidobacteria (4.9%) and Verrucomicrobia (4.5%) comprised most of the microbiome. In a beta-diversity analysis, the samples formed separate clusters. The Bellingshausen Station samples were characterized by an increased amount of Nostoc sp. and Janibacter sp. Although the deglaciation history had less of an effect on the soil microbiome, the early stages of deglaciation (Sample 1) had a higher proportion of bacteria belonging to the families Xanthomonadaceae, Sphingomonadaceae and Nocardioidaceae, whereas the older moraines (Sample 2) were enriched with Chthoniobacteriacae and N1423WL. Solirubrobacteriales, Gaiellaceae and Chitinophagaceae bacteria were present in both stages of deglaciation, characterized by genus-level differences. Taxonomic analysis of the abundant operational taxonomic units (OTUs) revealed both endemic (Marisediminicola antarctica, Hymenobacter glaciei) and cosmopolitan bacterial species in the microbiomes.

Copyright
Corresponding author
References
Hide All
Bates, S.T., Berg-Lyons, D., Caporaso, J.G., Walters, W.A., Knight, R. & Fierer, N. 2011. Examining the global distribution of dominant archaeal populations in soil. The ISME Journal, 5, 10.1038/ismej.2010.171.
Bockheim, J.G., ed. 2015. The soils of Antarctica. Cham, Switzerland: Springer, 322 pp.
Bolter, M. 2001. Soil development and soil biology on King George Island, Maritime Antarctic. Polish Polar Research, 2, 10.2478/v10183-011-0002-z.
Bottos, E.M., Scarrow, J.W., Archer, S.D.J., McDonald, I.R. & Cary, S.C. 2014. Bacterial community structures of Antarctic soils. In Cowan, D.A., ed. Antarctic terrestrial microbiology: physical and biological properties of Antarctic soils. Heidelberg: Springer, 933.
Bowman, J.P. & Nichols, D.S. 2005. Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia . International Journal of Systematic and Evolutionary Microbiology, 55, 10.1099/ijs.0.63527-0.
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 10.1038/nmeth0510-335.
Chong, C.W., Pearce, D.A., Convey, P., Yew, W.C. & Tan, I.K.P. 2012. Patterns in the distribution of soil bacterial 16S rRNA gene sequences from different regions of Antarctica. Geoderma, 181–182, 10.1016/j.geoderma.2012.02.017.
Chong, C.W., Tan, G.Y.A., Wong, R.C.S., Riddle, M.J. & Tan, I.K.P. 2009. DGGE fingerprinting of bacteria in soils from eight ecologically different sites around Casey Station, Antarctica. Polar Biology, 32, 10.1007/s00300-009-0585-6.
De Gannes, V., Bekele, I., Dipchansingh, D., Wuddivira, M.N., De Cairies, S., Boman, M. & Hickey, W.J. 2016. Microbial community structure and function of soil following ecosystem conversion from native forests to teak plantation forests. Frontiers in Microbiology, 7, 10.3389/fmicb.2016.01976.
DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P. & Andersen, G.L. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72, 10.1128/AEM.03006-05.
Fierer, N. & Jackson, R.B. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103, 10.1073/pnas.0507535103.
Fierer, N., Leff, J.W., Adams, B.J., Nielsen, U.N., Bates, S.T., Lauber, C.L., Owens, S., Gilbert, J.A., Wall, D.H. & Caporaso, J.G. 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America, 109, 10.1073/pnas.1215210110.
Foong, C.P., Ling, C.M.W.V. & González, M. 2010. Metagenomic analyses of the dominant bacterial community in the Fildes Peninsula, King George Island (South Shetland Islands). Polar Science, 4, 10.1016/j.polar.2010.05.010.
Fukuda, W., Chino, Y., Araki, S., Kondo, Y., Imanaka, H., Kanai, T., Atomi, H. & Imanaka, T. 2014. Polymorphobacter multimanifer gen. nov., sp. nov., a polymorphic bacterium isolated from Antarctic white rock. International Journal of Systematic and Evolutionary Microbiology, 64, 10.1099/ijs.0.050005-0.
González-Rocha, G., Muñoz-Cartes, G., Canales-Aguirre, C.B., Lima, C.A., Domínguez-Yévenes, M., Bello-Toledo, H. & Hernández, C.E. 2017. Diversity structure of culturable bacteria isolated from the Fildes Peninsula (King George Island, Antarctica): a phylogenetic analysis perspective. PLoS ONE, 12(6), e0179390.
Hughes, K.A. 2014. Threats to soil communities: human impacts. In Cowan, D.A., ed. Antarctic terrestrial microbiology: physical and biological properties of Antarctic soils. Heidelberg: Springer, 263277.
Janssen, P.H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology, 72, 10.1128/AEM.72.3.1719-1728.2006.
Jia, L., Feng, X., Zheng, Z., Han, L., Hou, X., Lu, Z. & Lv, J. 2015. Polymorphobacter fuscus sp. nov., isolated from permafrost soil, and emended description of the genus Polymorphobacter . International Journal of Systematic and Evolutionary Microbiology, 65, 10.1099/ijsem.0.000514.
Johnson, R.M., Madden, J.M. & Swafford, J.R. 1972. Taxonomy of Antarctic bacteria from soils and air primarily of the McMurdo Station and Victoria Land Dry Valleys region. Antarctic Research Series Terrestrial Biology III, 30, 10.1029/AR030p0035.
Larsbrink, J., Zhu, Y., Kharade, S.S., Kwiatkowski, K.J., Eijsink, V.G.H., Koropatkin, N.M., McBride, M.J. & Pope, P.B. 2016. A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin. Biotechnology for Biofuels, 9, 10.1186/s13068-016-0674-z.
Li, H.R., Yu, Y., Luo, W. & Zeng, Y.X. 2010. Marisediminicola antarctica gen. nov., sp. nov., an actinobacterium isolated from the Antarctic. International Journal of Systematic and Evolutionary Microbiology, 60, 10.1099/ijs.0.018754-0.
Lim, Y.K., Kweon, O.J., Kim, H.R., Kim, T.H. & Lee, M.K. 2017. First case of bacteremia caused by Janibacter hoylei . APMIS, 125, 10.1111/apm.12693.
Liu, Q., Liu, H.C., Zhang, J.L., Zhou, Y.G. & Xin, Y.H. 2015. Nocardioides glacieisoli sp. nov., isolated from a glacier. International Journal of Systematic and Evolutionary Microbiology, 65, 10.1099/ijsem.0.000658.
Lozupone, C. & Knight, R. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71, 10.1128/AEM.71.12.8228-8235.2005.
Myung, I.S., Lee, Y.K., Jeong, I.H., Moon, S.Y., Lee, S.W. & Shim, H.S. 2007. A new disease, bacterial black rot of Korean radish, caused by Acidovorax konjaci . Molecular Biology and Evolution, 24, 10.5197/j.2044-0588.2010.022.026.
Niederberger, T.D., Sohm, J.A., Gunderson, T.E., Parker, A.E., Tirindelli, J., Capone, D.G., Carpenter, E.J. & Cary, S.C. 2015. Microbial community composition of transiently wetted Antarctic Dry Valley soils. Frontiers in Microbiology, 6, 10.3389/fmicb.2015.00009.
Pan, Q., Wang, F., Zhang, Y., Cai, M., He, J. & Yang, H. 2013. Denaturing gradient gel electrophoresis fingerprinting of soil bacteria in the vicinity of the Chinese Great Wall Station, King George Island, Antarctica. Journal of Environmental Sciences, 25, 10.1016/S1001-0742(12)60229-0.
Peter, H.U., Buesser, C., Mustafa, O. & Pfeiffer, S. 2008. Risk assessment for the Fildes Peninsula and Ardley Island, and development of management plans for their designation as Specially Protected or Specially Managed Areas. Dessau-Roßlau: Umweltbundesamt, 344 pp. https://umweltbundesamt.de/publikationen/risk-assessment-for-fildes-peninsula-ardley-island.
Richter, I., Herbold, C.W., Lee, C.K., McDonald, I.R., Barrett, J.E. & Cary, S.C. 2014. Influence of soil properties on archaeal diversity and distribution in the McMurdo Dry Valleys, Antarctica. FEMS Microbiology Ecology, 89, 10.1111/1574-6941.12322.
Shivaji, S., Chaturvedi, P., Begum, Z., Pindi, P.K., Manorama, R., Padmanaban, D.A., Shouche, Y.S., Pawar, S., Vaishampayan, P., Dutt, C.B.S. & Datta, G.N. 2009. Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. International Journal of Systematic and Evolutionary Microbiology, 59, 10.1099/ijs.0.002527-0.
Simas, F.N.B., Schaeffer, C.E.G.R., Michel, R.F.M., Francelimo, M.R. & Bockheim, J.G. 2015. Soils of the South Orkney and South Shetland islands, Antarctica. In Bockheim, J.G., ed. The soils of Antarctica. Cham, Switzerland: Springer, 227274.
Siple, C.A. & Darling, P.A. 1941. Bacteria of Antarctica. Journal of Bacteriology, 42, 8398.
Strunecký, O., Elster, J. & Komárek, J. 2012. Molecular clock evidence for survival of Antarctic cyanobacteria (Oscillatoriales, Phormidium autumnale) from Paleozoic times. FEMS Microbiology Ecology, 82, 10.1111/j.1574-6941.2012.01426.x.
Teixeira, L.C.R.S., Peixoto, R.S., Cury, J.C., Sul, W.J., Pellizari, V.H., Tiedje, J. & Rosado, A.S. 2010. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. The ISME Journal, 4, 10.1002/9781118297674.ch105.
Tindall, B. 2004. Prokaryotic diversity in the Antarctic: the tip of the iceberg. Microbial Ecology, 47, 10.1007/s00248-003-1050-7.
Vincent, W.F. 2000. Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarctic Science, 12, 10.1017/S0954102000000420.
Wang, N.F., Zhang, T., Zhang, F., Wang, E.T., He, J.F., Ding, H., Zhang, B.T., Liu, J., Ran, X.B. & Zang, J.Y. 2015. Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica) as revealed by 454 pyrosequencing. Frontiers in Microbiology, 6, 10.3389/fmicb.2015.01188.
Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 10.1128/AEM.00062-07.
Weidler, G.W., Gerbl, F.W. & Stan-Lotter, H. 2008. Crenarchaeota and their role in the nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps. Applied and Environmental Microbiology, 74, 10.1128/AEM.02602-07.
Yan, W., Ma, H., Shi, G., Li, Y., Sun, B., Xiao, X. & Zhang, Y. 2017. Independent shifts of abundant and rare bacterial populations across East Antarctica glacial foreland. Frontiers in Microbiology, 8, 10.3389/fmicb.2017.01534.
Zdanowski, M.K., Zmuda-Baranowska, M.J., Borsuk, P., Światecki, A., Górniak, D., Wolicka, D., Jankowska, K.M. & Grzesiak, J. 2013. Culturable bacteria community development in postglacial soils of Ecology Glacier, King George Island, Antarctica. Polar Biology, 36, 10.1007/s00300-012-1278-0.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Pershina et al. supplementary material
Table S1 and Figure S1

 PDF (2.3 MB)
2.3 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed