Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-19T08:32:22.643Z Has data issue: false hasContentIssue false

In situ foraminifera in grounding zone diamict: a working hypothesis

Published online by Cambridge University Press:  29 March 2016

Philip J. Bart*
Affiliation:
Department of Geology and Geophysics and Museum of Natural Science, E235 Howe-Russell, Louisiana State University, Baton Rouge, LA 70803, USA
Laura Coquereau
Affiliation:
Department of Geology and Geophysics and Museum of Natural Science, E235 Howe-Russell, Louisiana State University, Baton Rouge, LA 70803, USA Department of Oceanography and Marine Environments, 4 Place Jussieu, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France
Sophie Warny
Affiliation:
Department of Geology and Geophysics and Museum of Natural Science, E235 Howe-Russell, Louisiana State University, Baton Rouge, LA 70803, USA
Wojciech Majewski
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland

Abstract

The ice-proximal diamict sediment deposited on the foreset of a grounding zone wedge in Glomar Challenger Basin on the eastern Ross Sea continental shelf yielded a low abundance assemblage of foraminifera at two piston core sites. We found 302 small well-preserved specimens representing 18 species of benthic foraminifera from 825 ml of sediment. Only three poorly preserved specimens of the planktonic foraminifera Neogloboquadrina pachyderma (sinistral) were found. Our combined analyses of preservation state, assemblage composition and stable isotopes suggest that the benthic foraminifera may be in situ. This possibility is of interest to palaeoclimatologists who use ice-proximal sediments on the Antarctic continental shelves to radiocarbon date the post-glacial retreat history.

Type
Physical Sciences
Copyright
© Antarctic Science Ltd 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asioli, A 1995. Living (stained) benthic foraminifera distribution in the western Ross Sea (Antarctica). Palaeopelagos, 5, 201214.Google Scholar
Bart, P.J. & Cone, A.N. 2012. Early stall of West Antarctic Ice Sheet advance on the eastern Ross Sea middle shelf followed by retreat at 27,500 14C yr bp. Palaeogeography, Palaeoclimatology, Palaeoecology, 335, 10.1016/j.palaeo.2011.08.007.Google Scholar
Corliss, B.H. 1985. Microhabitats of benthic foraminifera within deep-sea sediments. Nature, 314, 10.1038/314435a0.Google Scholar
Domack, E.W., Jacobsen, E.A., Shipp, S. & Anderson, J.B. 1999. Late Pleistocene-Holocene retreat of the West Antarctic Ice Sheet system in the Ross Sea: part 2–sedimentologic and stratigraphic signature. Geological Society of America Bulletin, 111, 15171536.2.3.CO;2>CrossRefGoogle Scholar
Gooday, A.J. 1993. Deep-sea benthic foraminiferal species which exploit phytodetritus – characteristic features and controls on distribution. Marine Micropaleontology, 22, 187205.Google Scholar
Gooday, A.J., Bowser, S.S. & Bernhard, J.M. 1996. Benthic foraminiferal assemblages in Explorers Cove, Antarctica: a shallow-water site with deep-sea characteristics. Progress in Oceanography, 37, 117166.Google Scholar
Gooday, A.J., Rothe, N., Bowser, S.S. & Pawlowski, J. 2014. Benthic foraminifera. In De Broyer, C., Koubbi, P., Griffiths, H.J., et al., eds. Biogeographic atlas of the Southern Ocean. Cambridge: Scientific Committee on Antarctic Research, 7482.Google Scholar
Graham, A.G.C., Larter, R.D., Gohl, K., Dowdeswell, J.A., Hillenbrand, C.D., Smith, J.A., Evans, J., Kuhn, G. & Deen, T. 2010. Flow and retreat of the Late Quaternary Pine Island-Thwaites palaeo-ice stream, West Antarctica. Journal of Geophysical Research - Earth Surface, 115, 10.1029/2009JF001482.Google Scholar
Harloff, J. & Mackensen, A. 1997. Recent benthic foraminiferal associations and ecology of the Scotia Sea and Argentine Basin. Marine Micropaleontology, 31, 129.Google Scholar
Hemer, M.A., Post, A.L., O’Brien, P.E., Craven, M., Truswell, E.M., Roberts, D. & Harris, P.T. 2007. Sedimentological signatures of the sub-Amery Ice Shelf circulation. Antarctic Science, 19, 497506.Google Scholar
Ishman, S.E. & Foley, K.M. 1996. Modern benthic foraminifer distribution in the Amerasian Basin, Arctic Ocean. Micropaleontology, 42, 206220.Google Scholar
Ishman, S.E. & Szymcek, P. 2003. Foraminiferal distributions in the former Larsen-A Ice Shelf and Prince Gustav Channel region, eastern Antarctic Peninsula margin: a baseline for Holocene paleoenvironment interpretation. Antarctic Research Series, 79, 239260.Google Scholar
Jakobsson, M., Anderson, J.B., Nitsche, F.O., Dowdeswell, J.A., Gyllencreutz, R., Kirchner, N., Mohammad, R., O’Regan, M., Alley, R.B., Anandakrishnan, S., Eriksson, B., Kirshner, A., Fernandez, R., Stolldorf, T., Minzoni, R. & Majewski, W. 2011. Geological record of ice shelf break-up and grounding line retreat, Pine Island Bay, West Antarctica. Geology, 39, 10.1130/G32153.1.Google Scholar
Kilfeather, A.A., Cofaigh, C.O., Lloyd, J.M., Dowdeswell, J.A., Xu, S. & Moreton, S.G. 2011. Ice-stream retreat and ice-shelf history in Marguerite Trough, Antarctic Peninsula: sedimentological and foraminiferal signatures. Geological Society of America Bulletin, 123, 9971015.Google Scholar
Korsun, S. & Hald, M. 2000. Seasonal dynamics of benthic foraminifera in a glacially fed fjord of Svalbard, European Arctic. Journal of Foraminiferal Research, 30, 251271.Google Scholar
Korsun, S.A., Pogodina, I.A., Forman, S.L. & Lubinski, D.J. 1995. Recent foraminifera in glaciomarine sediments from three arctic fjords of Novaja Zemlja and Svalbard. Polar Research, 14, 1532.Google Scholar
Licht, K.J. & Andrews, J.T. 2002. The 14C record of Late Pleistocene ice advance and retreat in the central Ross Sea, Antarctica. Arctic, Antarctic, and Alpine Research, 34, 324333.Google Scholar
Lipps, J.H, Ronan, T.E. & Delaca, T.E. 1979. Life below the Ross Ice Shelf, Antarctica. Science, 203, 447449.CrossRefGoogle ScholarPubMed
Mackensen, A. & Hald, M. 1988. Cassidulina teretis Tappan and Cassidulina laevigata d’Orbigny: their modern and late Quaternary distribution in northern seas. Journal of Foraminiferal Research, 18, 1624.Google Scholar
Mackensen, A. 2012. Strong thermodynamic imprint on Recent bottom-water and epibenthic δ13C in the Weddell Sea revealed: implications for glacial Southern Ocean ventilation. Earth and Planetary Science Letters, 317, 10.1016/j.epsl.2011.11.030.Google Scholar
Majewski, W. 2005. Benthic foraminiferal communities: distribution and ecology in Admiralty Bay, King George Island, West Antarctica. Polish Polar Research, 26, 159214.Google Scholar
Majewski, W. 2013. Benthic foraminifera from Pine Island and Ferrero bays, Amundsen Sea. Polish Polar Research, 34, 169200.CrossRefGoogle Scholar
Majewski, W. & Anderson, J.B. 2009. Holocene foraminiferal assemblages from Firth of Tay, Antarctic Peninsula: paleoclimate implications. Marine Micropaleontology, 73, 135247.Google Scholar
Majewski, W., Lecroq, B., Sinniger, F. & Pawlowski, J. 2007. Monothalamous foraminifera from Admiralty Bay, King George Island, West Antarctica. Polish Polar Research, 28, 187210.Google Scholar
Majewski, W., Wellner, J.S., Szczuciński, W. & Anderson, J.B. 2012. Holocene oceanographic and glacial changes recorded in Maxwell Bay, West Antarctica. Marine Geology, 326, 6779.CrossRefGoogle Scholar
McKnight, W.M. Jr 1962. The distribution of foraminifera off parts of the Antarctic coast. Bulletin of American Paleontology, 44, 65158.Google Scholar
Melis, R. & Salvi, G. 2009. Late Quaternary foraminiferal assemblages from western Ross Sea (Antarctica) in relation to the main glacial and marine lithofacies. Marine Micropaleontology, 70, 10.1016/j.marmicro.2008.10.003.Google Scholar
Murray, J.W. & Pudsey, C.J. 2004. Living (stained) and dead foraminifera from the newly ice-free Larsen Ice Shelf, Weddell Sea, Antarctica: ecology and taphonomy. Marine Micropaleontology, 53, 10.1016/j.marmicro.2004.04.001.Google Scholar
Nelson, C.S., Cook, P.J., Hendy, C.H. & Cuthbertson, A.M. 1993. Oceanographic and climatic changes over the past 160,000 years at Deep Sea Drilling Project Site 594 off southeastern New Zealand, southwest Pacific Ocean. Paleoceanography, 8, 435458.CrossRefGoogle Scholar
O’Brien, P.E., Smith, J., Stark, J.S., Johnston, G., Riddle, M. & Franklin, D. 2015. Submarine geomorphology and sea floor processes along the coast of Vestfold Hills, East Antarctica, from multibeam bathymetry and video data. Antarctic Science, 27, 10.1017/S095410201500371.CrossRefGoogle Scholar
Osterman, L.E. & Kellogg, T.B. 1979. Recent benthic foraminiferal distribution from the Ross Sea, Antarctica: relation to ecologic and oceanographic conditions. Journal of Foraminiferal Research, 9, 250269.Google Scholar
Pawlowski, J., Fahrni, J.F., Guiard, J., Conlan, K., Hardecker, J., Habura, A. & Bowser, S.S. 2005. Allogromiid foraminifera and gromiids from under the Ross Ice Shelf: morphological and molecular diversity. Polar Biology, 28, 514522.Google Scholar
Pflum, C.E. 1966. The distribution of foraminifera in the eastern Ross Sea, Amundsen Sea, and Bellingshausen, Antarctica. Bulletin of American Paleontology, 50, 151209.Google Scholar
Polyak, L. & Solheim, A. 1994. Late-glacial and postglacial environments in the northern Barents Sea west of Franz Josef Land. Polar Research, 13, 197207.Google Scholar
Post, A.L., Galton-Fenzi, B.K., Riddle, M.J., Herraiz-Borreguero, L., O’Brien, P.E., Hemer, M.A., McMinn, A., Rasch, D. & Craven, M. 2014. Modern sedimentation, circulation and life beneath the Amery Ice Shelf, East Antarctica. Continental Shelf Research, 74, 7787.Google Scholar
Pudsey, C.J., Murray, J.W., Appleby, P. & Evans, J. 2006. Ice shelf history from petrographic and foraminiferal evidence, northeast Antarctic Peninsula. Quaternary Science Reviews, 25, 23572379.Google Scholar
Sabbatini, A., Morigi, C., Negri, A. & Gooday, A.J. 2007. Distribution and biodiversity of stained monothalamous foraminifera from Tempelfjord, Svalbard. Journal of Foraminiferal Research, 37, 93106.Google Scholar
Schröder, C.J. 1988. Subsurface preservation of agglutinated foraminifera in the northwest Atlantic Ocean. Abhandlungen der geologischen Bundesanstalt, 41, 325336.Google Scholar
Ward, B.L., Barrett, P.J. & Vella, P. 1987. Distribution and ecology of benthic foraminifera in McMurdo Sound, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 58, 139153.Google Scholar
Webb, P.N. & Strong, C.P. 2006. Foraminiferal biostratigraphy and paleoecology in upper Oligocene–lower Miocene glacial marine sequences 9, 10, and 11, CRP-2/2A drill hole, Victoria Land Basin, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 71100.Google Scholar