Skip to main content
×
×
Home

Management strategies for red shrimp (Aristeus antennatus) fisheries in the Catalan sea (NW Mediterranean) based on bioeconomic simulation analysis

  • Francesc Maynou (a1), Francesc Sardà (a1), Sergi Tudela (a1) and Montserrat Demestre (a1)
Abstract

We present a simulation bioeconomic model based on an age-structured population biological sub-model and an economic sub-model with vessel-specific dynamics, applied to two red shrimp (Aristeus antennatus) stocks in the NW Mediterranean. The model is dynamic, the economic sub-model is disaggregated at the level of vessel and the two sub-models are linked by means of a fishing mortality vector. We analyzed the projection of selected indicators (catches, overall profits, fishing mortality and spawning stock biomass) for the target species of the deep-water trawl fishery in the NW Mediterranean, red shrimp. We built three alternative management scenarios based on input control and we examined the performance of these management strategies against the current management policies. The three alternative management strategies were: i) increase the cost of effort by eliminating the fuel tax exemption currently in place, ii) limit the nominal effort level (days at sea) to current levels, in order to offset the increasing trend observed in the last decade, and iii) change the selectivity patterns of the trawl by increasing mesh size. Our results show that for the two stocks analyzed, any of the three management measures (input controls) would be beneficial both to the stock and the fleets (over the medium and long terms) when compared with the projections over time of the status quo. Improving the selectivity of the fishing gear is more beneficial than limiting nominal effort or increasing the cost of effort. Comparing the performance of the management strategies on two stocks, one heavily fished and the other moderately so, we show that none of these management measures is able to substantially redress the situation of a heavily fished stock, implying that for the full recovery of heavily fished red shrimp stocks, we need to contemplate even stricter measures of management.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Management strategies for red shrimp (Aristeus antennatus) fisheries in the Catalan sea (NW Mediterranean) based on bioeconomic simulation analysis
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Management strategies for red shrimp (Aristeus antennatus) fisheries in the Catalan sea (NW Mediterranean) based on bioeconomic simulation analysis
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Management strategies for red shrimp (Aristeus antennatus) fisheries in the Catalan sea (NW Mediterranean) based on bioeconomic simulation analysis
      Available formats
      ×
Copyright
Corresponding author
maynouf@icm.csic.es
References
Hide All
[1] Bas C., Macpherson E., Sardà F., 1985, Fish and fishermen. The exploitable trophic levels. In: Margalef R. (Ed.) The Western Mediterranean, Oxford, Pergamon Press, pp. 296-316.
[2] Brander, K., 2003, What kinds of fish stock predictions do we need and what kinds of information will help us to make better predictions? Sci. Mar. 67 (Suppl. 1), 21-33.
[3] Carbonell, A., Carbonell, M., Demestre, M., Grau, A., Monserrat, S., 1999, The red shrimp Aristeus antennatus (Risso, 1816) fishery and biology in the Balearic Islands, Western Mediterranean. Fish. Res. 44, 1-13.
[4] Carbonell A., García M., Pereda P., Esteban A., Pomar G., Gaza M., Torres A., Gil J.L.P., 2001, The deep-water red shrimp fishery in the Spanish Mediterranean Sea. Scientific Council Research Documents of the Northwest Atlantic Fisheries Organization No. 01/85, 8 p.
[5] Christensen, S., 1997, Evaluation of management strategies – a bioeconomic approach applied to the Greenland shrimp fishery. ICES J. Mar. Sci. 54, 412-426.
[6] Demestre, M., Martín, P., 1993, Optimum exploitation of a demersal resource in the western Mediterranean: the fishery of the deep-water shrimp Aristeus antennatus (Risso, 1816). Sci. Mar. 57, 175-182.
[7] Demestre, M., Lleonart, J., 1993, Population dynamics of Aristeus antennatus (Decapoda: Dendrobranchiata) in the northwestern Mediterranean. Sci. Mar. 57, 183-189.
[8] Eide, A., Skjold, F., Olsen, F., Flaaten, O., 2003, Harvest functions: The Norwegian bottom trawl cod fisheries. Mar. Res. Econ. 18, 81-93.
[9] García-Rodríguez, M., Esteban, A., 1999, On the biology and fishery of Aristeus antennatus (Risso, 1816), (Decapoda, Dendrobranchiata) in the Ibiza Channel (Balearic Islands, Spain). Sci. Mar. 63, 27-37.
[10] Guijarro, B., Massutí, E., 2006, Selectivity of diamond- and square-mesh codends in the deep-water crustacean trawl fishery off the Balearic islands (western Mediterranean). ICES J. Mar. Sci. 63, 52-67.
[11] Holland, D.S., 2000, A bioeconomic model of marine sanctuaries on Georges Bank. Can. J. Fish. Aquat. Sci. 57, 1307-1319.
[12] Holland, D.S., Bentley, N., Lallemand, P., 2005, A bioeconomic analysis of management strategies for rebuilding and maintenance of the NSS rock lobster (Jasus edwardsii) stock in southern New Zealand. Can. J. Fish. Aquat. Sci. 62, 1553-159.
[13] Holland, D.S., Schnier, K.E., 2006, Individual habitat quotas for fisheries. J. Environ. Econ. Manage. 51, 72-92.
[14] Horwood J.W. (Ed.), 1994, Modelling of fisheries management strategies. Ministry of Agriculture, Fisheries and Food, Directorate of Fisheries Research, Fisheries Laboratory, UK. Privately published.
[15] Kell L.T, Pilling G.M., Kirkwood G.P., Pastoors M.A., Mesnil B., Korsbrekke K., Abaunza P., Aps R., Biseau A., Kunzlik P., Needle C.L., Roel B.A., Ulrich C., 2006. An evaluation of multi-annual management strategies for roundfish stocks. ICES J. Mar. Sci. 63, 12-24.
[16] Lindebø E., 2001, Technological progress and capacity estimations. Management implications for the Danish cod trawl fishery. Mimeo.
[17] Lleonart J., Salat, J., 1997, VIT: Software for fishery analysis. Rome, FAO Computerized Information Ser. (Fisheries) 11, 1-107.
[18] Lleonart, J., Franquesa, R., Salat, J., Oliver, P., 1996, “Heures” a bio-economic model for Mediterranean fisheries, towards an approach for the evaluation of management strategies. Sci. Mar. 60, 427-430.
[19] Lleonart, J., Maynou, F., Franquesa, R., 1999, A bioeconomic model for Mediterranean fisheries. Fish. Econ. Newslet. 48, 1-16.
[20] Lleonart J., Maynou F., Recasens L., Franquesa R., 2003, A bioeconomic model for Mediterranean fisheries, the hake off Catalonia (western Mediterranean) as a case study. Sci. Mar. 67 (suppl. 1), 337-351.
[21] Mattos S., Maynou F., Franquesa R., in press, A bioeconomic analysis of the handline and gillnet coastal fisheries of Pernamuco State, northeastern Brazil. Sci. Mar.
[22] Mesnil, B., Shepherd, J.G., 1990, A hybrid age- and length-structured model for assessing regulatory measures in multiple-species, multiple-fleet fisheries. J. Cons. Intern. Explor. Mer 47, 115-132.
[23] Phillips, B.F., Melville-Smith, R., 2005, Sustainability of the western rock lobster fishery: A review of past progress and future challenges. Bull. Mar. Sci. 76, 485-500.
[24] Ragonese, S., Zagra, M., Di Stefano, L., Bianchini, M., 2001, Effect of codend mesh size on the performance of the deep-water bottom trawl used in the red shrimp fishery in the Strait of Sicily (Mediterranean Sea). Hydrobiologia 449, 279-291.
[25] Sardà F. (coord.), 2000, Analysis of the Mediterranean (including North Africa) deep-sea shrimps fishery: catches, effort and economics (EC, DG XIV, C97/018). http://www.faocopemed.org/vldocs/0000191/ deepseashrimps.pdf
[26] Sardà, F., Cartes, J.E., Norbis, W., 1994, Spatio-temporal structure of the deep-water shrimp Aristeus antennatus (Decapoda: Aristeidae) population in the western Mediterranean. Fish. Bull. 92, 599-607.
[27] Sardà, F., Maynou, F., Talló, L., 1997, Seasonal and spatial mobility patterns of rose shrimp Aristeus antennatus in the Western Mediterranean. Mar. Ecol. Prog. Ser. 159, 133-141.
[28] Seijo, J.C., Defeo, O., Salas, S., 1998, Fisheries bioeconomics: Theory, modelling and management. FAO Fish. Tech. Pap. 368, 1-108.
[29] Sparre P., Willmann R., 1993, Software for bio-economic analysis of fisheries. BEAM 4. Analytical bio-economic simulation of space-structured multispecies and multi-fleet fisheries. FAO Computerized Information Series (Fisheries), 3 (2 vol.).
[30] Tobar, R., and Sardà, F., 1987, Análisis de la evolución de las capturas de gamba rosada, Aristeus antennatus (Risso 1816), en los últimos decenios en Cataluña. Inf. Téc. Invest. Pesq. 142, 1-20.
[31] Tudela, S., Sardà, F., Maynou, F., Demestre, M., 2003, Influence of submarine canyons on the distribution of the deep-water shrimp, Aristeus antennatus (Risso 1816) in the NW Mediterranean. Crustaceana 76, 217-226.
[32] Ulrich, C., Marchal, P., 2002, Sensitivity if some biological reference points to shifts in exploitation patterns and inputs uncertainty for three North Sea demersal stocks. Fish. Res. 58, 153-169
[33] Ulrich, C., Le Gallic, B., Dunn, M.R., Gascuel, D., 2002a, A multi-species multi-fleet bioeconomic simulation model for the English Channel artisanal fisheries. Fish. Res. 58, 379-401.
[34] Ulrich, C., Pascoe, S., Sparre, P.J., De Wilde, J.-W., Marchal, P., 2002b, Influence of trends in fishing power on bioeconomics in the North Sea flatfish fishery regulated by catches or by effort quotas. Can. J. Fish. Aquat. Sci. 59, 829-843.
[35] Werner, F.E., Quinlan, J.A., Lough, R.G., Lynch, D.R., 2001, Spatially-explicit individual based modeling of marine populations: a review of the advances in the 1990s. Sarsia 86, 411-421.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Aquatic Living Resources
  • ISSN: 0990-7440
  • EISSN: 1765-2952
  • URL: /core/journals/aquatic-living-resources
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed