Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-v9bzm Total loading time: 1.072 Render date: 2023-02-04T07:15:16.785Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

The physiological constellation of deprivation: Immunological strategies and health outcomes

Published online by Cambridge University Press:  29 November 2017

Angela R. Garcia
Affiliation:
Department of Anthropology, University of California, Santa Barbara, CA 93106-3210. angelagarcia@umail.ucsb.edublackwell@anth.ucsb.eduhttps://sites.google.com/view/angelargarciawww.anth.ucsb.edu/faculty/blackwell
Aaron D. Blackwell
Affiliation:
Department of Anthropology, University of California, Santa Barbara, CA 93106-3210. angelagarcia@umail.ucsb.edublackwell@anth.ucsb.eduhttps://sites.google.com/view/angelargarciawww.anth.ucsb.edu/faculty/blackwell

Abstract

Physiology and behavior are best thought of as two aspects of the same biological process, shaped simultaneously by natural selection. Like behavioral strategies, ecological conditions may affect physiological strategies, leading to changes in immunity and hormonal regulation. These alternate strategies help explain the health correlations of deprivation and provide additional pathways for feedback from early-life experiences.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blackwell, A. D., Trumble, B. C., Maldonado Suarez, I., Stieglitz, J., Beheim, B., Snodgrass, J. J., Kaplan, H. & Gurven, M. (2016) Immune function in Amazonian horticulturalists. Annals of Human Biology 43(4):382–96.CrossRefGoogle ScholarPubMed
Cermakian, N., Lange, T., Golombek, D., Sarkar, D., Nakao, A., Shibata, S. & Mazzoccoli, G. (2013) Crosstalk between the circadian clock circuitry and the immune system. Chronobiology International 30(7):870–88.CrossRefGoogle ScholarPubMed
Chrousos, G. P. (2000) The stress response and immune function: Clinical implications. The 1999 Novera H. Spector Lecture. Annals of the New York Academy of Sciences 917:3867.CrossRefGoogle Scholar
Demas, G. & Nelson, R. (2012) Ecoimmunology. Oxford University Press.Google ScholarPubMed
Martin, L. B., Weil, Z. M. & Nelson, R. J. (2007) Immune defense and reproductive pace of life in Peromyscus mice. Ecology 88(10):2516–28.CrossRefGoogle ScholarPubMed
McDade, T. W., Georgiev, A. V. & Kuzawa, C. W. (2016) Trade-offs between acquired and innate immune defenses in humans. Evolution, Medicine, and Public Health 2016(1):116.CrossRefGoogle ScholarPubMed
Miller, G. E., Chen, E. & Parker, K. J. (2011) Psychological stress in childhood and susceptibility to the chronic diseases of aging: Moving toward a model of behavioral and biological mechanisms. Psychological Bulletin 137(6):959–97.CrossRefGoogle Scholar
Petrovsky, N. (2001) Towards a unified model of neuroendocrine-immune interaction. Immunology and Cell Biology 79(4):350–57.CrossRefGoogle ScholarPubMed
Shattuck, E. C. & Muehlenbein, M. P. (2015) Human sickness behavior: Ultimate and proximate explanations. American Journal of Physical Anthropology 157(1):118.CrossRefGoogle ScholarPubMed
Sheldon, B. C. & Verhulst, S. (1996) Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology & Evolution 11(8):317–21.CrossRefGoogle ScholarPubMed
Siegel, M., Bradley, E. H. & Kasl, S. V. (2003) Self-rated life expectancy as a predictor of mortality: Evidence from the HRS and AHEAD surveys. Gerontology 49(4):265–71.CrossRefGoogle ScholarPubMed
Stieglitz, J., Trumble, B. C., Thompson, M. E., Blackwell, A. D., Kaplan, H. & Gurven, M. (2015) Depression as sickness behavior? A test of the host defense hypothesis in a high pathogen population. Brain, Behavior, and Immunity 49:130–39.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The physiological constellation of deprivation: Immunological strategies and health outcomes
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The physiological constellation of deprivation: Immunological strategies and health outcomes
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The physiological constellation of deprivation: Immunological strategies and health outcomes
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *