Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 166
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Clark, David L. Kizer Zeeff, Corinna Karson, Adam Roberts, J. Andrew Uetz, George W. and Ebensperger, L. 2016. Risky Courtship: Background Contrast, Ornamentation, and Display Behavior of Wolf Spiders Affect Visual Detection by Toad Predators. Ethology, Vol. 122, Issue. 5, p. 364.


    Cox, S. M. and Gillis, Gary B. 2016. Sensory feedback and coordinating asymmetrical landing in toads. Biology Letters, Vol. 12, Issue. 6, p. 20160196.


    Salgado-Montejo, Alejandro Salgado, Carlos José Alvarado, Jorge and Spence, Charles 2016. Simple lines and shapes are associated with, and communicate, distinct emotions. Cognition and Emotion, p. 1.


    2016. The Neuroethology of Predation and Escape.


    Gadbois, Simon Sievert, Olivia Reeve, Catherine Harrington, F.H. and Fentress, J.C. 2015. Revisiting the concept of behavior patterns in animal behavior with an example from food-caching sequences in Wolves (Canis lupus), Coyotes (Canis latrans), and Red Foxes (Vulpes vulpes). Behavioural Processes, Vol. 110, p. 3.


    Rosa Salva, O. Mayer, U. and Vallortigara, G. 2015. Roots of a social brain: Developmental models of emerging animacy-detection mechanisms. Neuroscience & Biobehavioral Reviews, Vol. 50, p. 150.


    Baum, Tomer Katsman, Igor Rivlin, Ehud Broza, Meir Moshkovich, Michael and Katzir, Gadi 2014. Response of the Praying Mantis, Sphodromantis Viridis, to Target Change in Size and to Target Visual Occlusion. Journal of Insect Behavior, Vol. 27, Issue. 3, p. 333.


    Hernik, M. Fearon, P. and Csibra, G. 2014. Action anticipation in human infants reveals assumptions about anteroposterior body-structure and action. Proceedings of the Royal Society B: Biological Sciences, Vol. 281, Issue. 1781, p. 20133205.


    Höbel, Gerlinde Kim, Diana S. and Neelon, Daniel 2014. Do Green Treefrogs (Hyla cinerea) Eavesdrop on Prey Calls?. Journal of Herpetology, Vol. 48, Issue. 3, p. 389.


    Zoratto, Francesca Manzari, Leonardo Oddi, Ludovica Pinxten, Rianne Eens, Marcel Santucci, Daniela Alleva, Enrico and Carere, Claudio 2014. Behavioural response of European starlings exposed to video playback of conspecific flocks: Effect of social context and predator threat. Behavioural Processes, Vol. 103, p. 269.


    Anselme, Patrick 2012. Modularity of mind and the role of incentive motivation in representing novelty. Animal Cognition, Vol. 15, Issue. 4, p. 443.


    Sloggett, John J. 2012. Predation of Ladybird Beetles (Coleoptera: Coccinellidae) by Amphibians. Insects, Vol. 3, Issue. 4, p. 653.


    Goodale, Melvyn A. 2011. Transforming vision into action. Vision Research, Vol. 51, Issue. 13, p. 1567.


    Monroy, Jenna A. and Nishikawa, Kiisa 2011. Prey capture in frogs: alternative strategies, biomechanical trade-offs, and hierarchical decision making. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, Vol. 315A, Issue. 2, p. 61.


    Boiteau, G. and McCarthy, P. C. 2010. Is there a role for stripes of adults and colour of larvae in determining the avoidance of the Colorado potato beetle by the American toad?. Canadian Journal of Zoology, Vol. 88, Issue. 5, p. 468.


    Brockhusen-Holzer, Friederike and Curio, Eberhard 2010. Ethotypic Variation of Prey Recognition in Juvenile Anolis lineatopus (Reptilia: Iguanidae). Ethology, Vol. 86, Issue. 1, p. 19.


    Roberts, J. Andrew and Uetz, George W. 2008. Discrimination of Variation in a Male Signaling Trait Affects Detection Time in Visual Predators. Ethology, Vol. 114, Issue. 6, p. 557.


    Sloggett, John J. and Zeilstra, Ilja 2008. Waving or tapping? Vibrational stimuli and the general function of toe twitching in frogs and toads (Amphibia: Anura). Animal Behaviour, Vol. 76, Issue. 5, p. e1.


    Suzuki, Hirohumi Kubo, Yukari and Yamamoto, Toshiharu 2008. Orexin-A immunoreactive cells and fibers in the central nervous system of the axolotl brain and their association with tyrosine hydroxylase and serotonin immunoreactive somata. Journal of Chemical Neuroanatomy, Vol. 35, Issue. 4, p. 295.


    Sztarker, Julieta and Tomsic, Daniel 2008. Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations. Journal of Comparative Physiology A, Vol. 194, Issue. 6, p. 587.


    ×

Neuroethology of releasing mechanisms: Prey-catching in toads

  • Jörg-Peter Ewert (a1)
  • DOI: http://dx.doi.org/10.1017/S0140525X00023128
  • Published online: 01 February 2010
Abstract
Abstract

“Sign stimuli” elicit specific patterns of behavior when an organism's motivation is appropriate. In the toad, visually released prey-catching involves orienting toward the prey, approaching, fixating, and snapping. For these action patterns to be selected and released, the prey must be recognized and localized in space. Toads discriminate prey from nonprey by certain spatiotemporal stimulus features. The stimulus-response relations are mediated by innate releasing mechanisms (RMs) with recognition properties partly modifiable by experience. Striato-pretecto-tectal connectivity determines the RM's recognition and localization properties, whereas medialpallio-thalamo-tectal circuitry makes the system sensitive to changes in internal state and to prior history of exposure to stimuli. RMs encode the diverse stimulus conditions referring to the same prey object through different combinations of “specialized” tectal neurons, involving cells selectively tuned to prey features. The prey-selective neurons express the outcome of information processing in functional units consisting of interconnected cells. Excitatory and inhibitory interactions among feature-sensitive tectal and pretectal neurons specify the perceptual operations involved in distinguishing the prey from its background, selecting its features, and discriminating it from predators. Other connections indicate stimulus location. The results of these analyses are transmitted by specialized neurons projecting from the tectum to bulbar/spinal motor systems, providing a sensorimotor interface. Specific combinations of such projective neurons – mediating feature- and space-related messages – form “command releasing systems” that activate corresponding motor pattern generators for appropriate prey-catching action patterns.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J Allman , F. Miezin & E. McGuinnes (1985) Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Annual Review of Neuroscience 8:407–30. [DI]

U. an der Heiden & G. Roth (1983) Cooperative neural processes in amphibian visual prey recognition. In: Synergetics of the brain, ed. E. Basar , H. Flohr H. Haken & A. J. Mandell . Springer. [GR]

M. Antal , N. Matsumoto & G. Székely (1986) Tectal neurons of the frog: Intracellular recording and labeling with cobalt electrodes. Journal of Comparative Neurology 246:238–53. [aJ-PE]

M. A. Arbib (1982) Modelling neural mechanisms of visuomotor coordination in frog and toad. In: Competition and cooperation in neural nets, ed. S. Amari & M. A. Arbib .Springer-verlag. [aJ-PE]

G. Atkins , S. Ligman , F. Burghardt & J. Stout (1984) Changes in phonotaxis by the female cricket Acheta domesticus L. after killing identified acoustic interneurons. Journal of Comparative Physiology 154:795804. [JMC]

H. Autrum (1959) Das Fehlen unwillkürlicher Augenbewegungen beim Frosch. Die Naturwissenschaften 46:436. [aJ-PE]

G. P. Baerends (1976) The functional organization of behaviour. Animal Behaviour 24:726–38. [aJ-PE]

G. P. Baerends (1985) Do the dummy experiments with sticklebacks support the IRMconcept? Behaviour 93:258–77. [GPB]

G. P. Baerends & R. H. Drent , eds. (1982) The herring gull and its egg. Part 2: The responsiveness to egg-features. Behaviour 82: 1416. [GPB]

H. B. Barlow (1953) Summation and inhibition in the frog's retina. Journal of Physiology (London) 119:6988. [aJ-PE]

A. Beck & J.-P. Ewert (1979) Prey selection by toads (Bufo bufo L.) in response to configurational stimuli moved in the visual field z, y-coordinates. Journal of Comparative Physiology 129:207–9. [aJ-PE]

D. Bieger & R. S. Neuman (1984) Selective accumulation of hydroxytryptamines by frogs tectal neurons. Neuroscience 12:1167–77. [aJ-PE]

G. Birukow & M. Meng (1955) Eine neue Methode zur Prufung des Gesichtssinnes bei Amphibien. Naturwissenschaften 42:652–53. [aJ-PE]

H.-W. Borchers , H. Burghagen & J.-P. Ewert (1978) Key stimuli of prey for toads (Bufo bufo L.): Configuration and movement patterns. Journal of Comparative Physiology 128:189–92. [aJ-PE]

H.-W. Borchers & J.-P. Ewert (1979) Correlation between behavioral and neuronal activities of toads Bufo bufo (L.) in response to moving configurational prey stimuli. Behavioural Processes 4:99106. [aJ-PE]

H.-W. Borchers & C. Pinkwart (1983) A telemetry system for single unit recording in the freely moving toad (Bufo bufo L). In: Advances in vertebrate neuroethology, ed. J.-P. Ewert , R. R. Capranica & D. J. Ingle . Plenum. [aJ-PE]

K. Brändle & G. Székely (1973) The control of alternating coordination of limb pairs in the newt (Triturus vulgaris). Brain, Behavior and Evolution 8:366–85. [CS]

P. D. Brodfueher & W. O. Friesen (1986) From stimulation to undulation: A neuronal pathway for the control of swimming in the leech. Science 234: 1002–4. [JMC]

L. P. Brower , J. V. Z. Brower & P. W. Westcott (1960) Experimental studies of mimicry. 5: The reaction of toads (Bufo terrestris) to bumblebees (Bombus americanorum) and their robberfly mimics (Mallophora bomboides), with a discussion of aggressive mimicry. American Naturalist 94:343–56. [aJ-PE]

W. T. Brown & D. Ingle (1973) Receptive field changes produced in frog thalamic units by lesions of the optic tectum. Brain Research 59:405–9. [aJ-PE]

J. Brzoska & H. Schneider (1978) Modification of prey-catching behavior by learning in the common toad (Bufo b. bufo L., Anura, Amphibia): Changes in response to visual objects and effects of auditory stimuli. Behavioural Processes 3:125–36. [aJ-PE]

T. H. Bullock (1983) Implications for neuroethology from comparative neurophysiology. In: Advances in vertebrate neuroethology, ed. J.-P. Ewert , R. R. Capranica & D. J. Ingle . Plenum [aJ-PE]

H. Burghagen & J.-P. Ewert (1982) Question of “head preference” in response to worm-like dummies during prey-capture of toads Bufo bufo. Behavioral Processes 7:295306. [rJ-PE, DI]

H. Burghagen & J.-P. Ewert (1983) Influence of the background for discriminating object motion from self-induced motion in toads Bufo bufo (L.). Journal of Comparative Physiology 152:241–49. [arJ-PE]

H. S. Caine & E. R. Gruberg (1985) Ablation of nucleus isthmi leads to loss of specific visually elicited behaviors ir the frog Rana pipiens. Neuroscience Letters 54:307–12. [rJ-PE, EG]

R. R. Capranica (1983) Sensory processing of key stimuli. In: Advances in vertebrate neuroethology, ed. J.-P. Ewert , R. R. Capranica & D. J. Ingle . Plenum. [aJ-PE]

T. J. Carew , E. T. Walters & E. R. Kandel (1981) Associative learning in Aplysia: Cellular correlates supporting a conditioned fear hypothesis. Science 211:501–4. [RD]

G. Chevalier , S. Vacher & J. M. Deniau (1984) Inhibitory nigral influence on tectospinal neurons, a possible implication of basal ganglia in orienting behavior. Experimental Brain Research 53:320–26. [aJ-PE]

S.-H. Chung , S. A. Raymond & J. Y. Lettvin (1970) Multiple meaning in single visual units. Brain, Behavior and Evolution 3:72101. [rJ-PE, EC]

P. Clairambault (1976) Development of the prosencephalon. In: Frog neurobiology, ed. R. Llinás & W. Precht . Springer-Verlag. [aJ-PE]

O. Creutzfeldt (1983) Cortex cerebri. Springer-Verlag. [rJ-PE]

T. S. Collett (1977) Stereopsis in toads. Nature 267:349–51. [arJ-PE, GR]

T. S. Collett (1983) Picking a route: Do toads follow rules or make plans? In: Advances in vertebrate neuroethology, ed. J.-P. Ewert , R. R. Capranica & D. J. Ingle . Plenum. [aJ-PE, MAA]

C. Comer & P. Grobstein (1981) Involvement of midbrain structures in tactually and visually elicited prey acquisition behavior in the frog, Rana pipiens. Journal of Comparative Physiology 142:151–60. [PG]

G. Czihak , H. Langer & H. Ziegler (1981) Biologie. Springer-Verlag. [aJ-PE]

W. J. Davis & R. Gillette (1978) Neural correlate of behavioral plasticity in command neurons of Pleurobranchaea. Science 199:801–3. [aJ-PE]

W. J. Davis & M. P. Kovac (1981) The command neuron and the organization of movement. Trends in Neurosciences 4:7376. [aJ-PE]

K. Dierickx (1969) Hypothalamo-hypophysial regulation of food intake in Rana temporaria. General Comparative Endocrinology 13:361–66. [arJ-PE]

N. Dieringer (1986) Image fading – a problem for frogs? Naturwissenschaften 73:330. [aJ-PE]

N. Dieringer & W. Precht (1982) Compensatory head and eye movements in the frog and their contribution to stabilization of gaze. Experimental Brain Research 47:394406. [AR]

N. Dieringer , W. Precht & A. R. Blight (1982) Resetting fast phases of head and eye and their linkage in the frog. Experimental Brain Research 47: 407–16. [AR]

J. F. Disterhoft & D. K. Stuart (1977) Differentiated short latency response increases after conditioning in inferior colliculus neurons of alert rat. Brain Research 130:315–33. [GE]

R. C. Eaton (1983) Is the Mauthner cell a vertebrate command neuron? A neuroethological perspective on an evolving concept. In: Advances in vertebrate neuroethology, ed. J.-P. Ewert , R. R. Capranica & D. J. Ingle . Plenum. [arJ-PE, CMC]

R. C. Eaton & R. DiDomenico (1985) Command and the neural causation of behavior: A theoretical analysis of the necessity and sufficiency paradigm. Brain, Behavior and Evolution 27:132–64. [rJ-PE, RD]

R. C. Eaton & J. T. Hacket (1984) The role of the Mauthner cell in fast starts involving escape in teleost fish. In: Neural mechanisms of startle behavior, ed. R. C. Eaton . Plenum. [JMC]

R. C. Eaton , J. Nissanov & C. M. Wieland (1984) Differential activation of Mauthner and non-Mauthner startle circuits in the zebrafish: Implications for functional substitution. Journal of Comparative Physiology A 155:813–20. [RD]

S. O. E. Ebbesson (1970) Selective silver impregnation of degenerating axoplasm in poikilothermic vertebrates. In: Contemporary research methods in neuroanatomy, ed. J. H. W. Nauta & S. O. E. Ebbesson . Springer-Verlag. [SOEE]

S. O. E. Ebbesson (1976) Morphology of the spinal cord. In: Frog neurobiology, ed. R. Llinas & W. Precht . Springer-Verlag. [aJ-PE]

S. O. E. Ebbesson (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell and Tissue Research 213:179212. [SOEE]

I. Eibl-Eibesfeldt (1951) Nahrungserwerb und Beuteschema der Erdkröte (Bufo bufo L). Behaviour 4:135. [aJ-PE]

K.-H. Eikmanns (1955) Verhaltensphysiologische Untersuchungen über den Beutefang und das Bewegungssehen der Erdkröte (Bufo bufo L.). Zeitschrift für Tierpsychologie 12:229–53. [aJ-PE]

J.-P. Ewert (1967a) Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung beim Beutefang der Erdkröte (Bufo bufo L.). Zeitschrift für vergleichende Physiologie 57:263–98. [arJ-PE]

J.-P. Ewert (1967b) Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L.) durch elektrische Mittelhirnreizung. Zeitschrift für vergleichende Physiologie 54:455–81. [aJ-PE]

J.-P. Ewert (1967c) Elektrische Reizung des retinalen Projektionsfeldes im Mittelhirn der Erdkröte (Bufo bufo L.). Pflügers Archiv 295:9098. [aJ-PE]

J.-P. Ewert (1969a) Quantitative Analyse von Reiz-Reaktions-Beziehungen bei visuellem Auslösen der Beutefang-Wendereaktion der Erdkröte (Bufo bufo L.). Pflügers Archiv 308:225–43. [arJ-PE]

J.-P. Ewert (1969b) Das Beutefangverhalten zwischenhirndefekter Erdkröten (Bufo bufo L.) gegenüber bewegten und ruhenden visuellen Mustern. Pflügers Archiv 306:210–18. [aJ-PE]

J.-P. Ewert (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Zeitschrift für vergleichende Physiologie 74:81102. [aJ-PE, DI]

J.-P. Ewert (1974) The neural basis of visually guided behavior. Scientific American 230:3442. [arJ-PE]

J.-P. Ewert (1984a) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Comparative neurology of the optic tectum, ed. H. Vanegas . Plenum. [arJ-PE, AR]

J.-P. Ewert (1985) The Niko Tinbergen Lecture 1983: Concepts in vertebrate neuroethology. Animal Behaviour 33:129. [aJ-PE]

J.-P. Ewert (1987) Neuroethology: Toward a functional analysis of stimulus-response mediating and modulating neural circuitries. In: Cognitive processes and spatial orientation in animal and man. Part 1, ed. P. Ellen & C. Thinus-Blanc . Martinus Nijhoff. [arJ-PE]

J.-P. Ewert , B. Arend , V. Becker & H.-W. Borchers (1979) Invariants in configurational prey selection by Bufo bufo (L.). Brain, Behavior and Evolution 16:3851. [aJ-PE]

J.-P. Ewert & H.-W. Borchers (1971) Reaktionscharakteristik von Neuronen aus dem Tectum opticum und Subtectum der Erdkröte Bufo bufo (L.). Zeitschrift für vergleichende Physiologie 71:165–89. [aJ-PE]

J.-P. Ewert , H.-W. Borchers & A. von Wietersheim (1978) Question of prey feature detectors in the toad's Bufo bufo (L.) visual system; A correlation analysis. Journal of Comparative Physiology 126:4347. [aJ-PE]

J.-P. Ewert , H.-W. Borchers & A. von Wietersheim (1979) Directional sensitivity, invariance, and variability of tectal T5 neurons in response to moving configurational stimuli in the toad Bufo bufo (L.). Journal of Comparative Physiology 132:191201. [aJ-PE]

J.-P. Ewert & H. Burghagen (1979a) Ontogenetic aspects on visual “sizeconstancy” phenomena in the midwife toad Alytes obstetricans (Laur.). Brain, Behavior and Evolution 16:99112. [aJ-PE]

J.-P. Ewert , H. Burghagen , L. Albrecht & J. Kepper (1982) Effects of background structure on the discrimination of configurational moving prey dummies by toads Bufo bufo (L.). Journal of Comparative Physiology 147:179–87. [aJ-PE]

J.-P. Ewert , H. Burghagen & E. Schürg-Pfeiffer (1983) Neuroethological analysis of the innate releasing mechanism for prey-catching behavior in toads. In: Advances in vertebrate neuroethology, ed. J.-P. Ewert , R. R. Capranica & D. J. Ingle . Plenum. [arJ-PE]

J.-P. Ewert & L. Gebauer (1973) Gröβenkonstanzphänomene im Beutefangverhalten der Erdkröte (Bufo bufo L.). Journal of Comparative Physiology 85:303–15. [aJ-PE]

J.-P. Ewert & H.-A. Härter (1968) Inhibitionsphänomene im visuellen System der Erdkröte. Naturwissenschaften 55:237. [aJ-PE]

J.-P. Ewert & H.-A. Härter (1969) Der hemmende Einfluβ gleichzeitig bewegter Beuteattrappen auf das Beutefangverhalten der Erdkröte. Zeitschrift für vergleichende Physiologie 64:135–53. [aJ-PE]

J.-P. Ewert & F. J. Hock (1972) Movement sensitive neurones in the toad's retina. Experimental Brain Research 16:4159. [aJ-PE]

J.-P. Ewert , F. J. Hock & A. von Wietersheim (1974) Thalamus/Praetectum/Tectum: Retinale Topographie und physiologische Interaktionen bei der Kröte (Bufo bufo L.). Journal of Comparative Physiology 92:343–56. [aJ-PE]

J.-P. Ewert & W. Kehl (1978) Configurational prey-selection by individual experience in the toad Bufo bufo. Journal of Comparative Physiology 126:105–14. [aJ-PE]

J.-P. Ewert , N. Matsumoto & W. W. Schwippert (1985) Morphological identification of prey-selective neurons in the grass frog's optic tectum. Naturwissenschaften 72:661–62. [aJ-PE, MAA, SOEE]

J.-P. Ewert & B. Rehn (1969) Quantitative Analyse der Reiz-Reaktionsbeziehungen bei visuellem Auslösen des Fluchtverhaltens der Wechselkröte (Bufo viridis Laur.). Behaviour 35:212–34. [aJ-PE]

J.-P. Ewert , E. Schürg-Pfeiffer & A. Weerasuriya (1984) Neurophysiological data regarding motor pattern generation in the medulla oblongata of toads. Naturwissenschaften 71:590–91. [aJ-PE, CMC]

J.-P. Ewert , I. Speckhardt & W. Amelang (1970) Visuelle Inhibition und Exzitation im Beutefangverhalten der Erdkröte (Bufo bufo L.). Zeitschrift für vergleichende Physiologie 68:84110. [aJ-PE]

J.-P. Ewert & R. Traud (1979) Releasing stimuli for antipredator behaviour in the common toad Bufo bufo (L.). Behaviour 68:170–80. [aJ-PE]

J.-P. Ewert & W. von Seelen (1974) Neurobiologie und System-Theorie eines visuellen Muster-Erkennungsmechanismus bei Kröten. Kybernetik 14:167–83. [arJ-PE]

J.-P. Ewert & A. von Wietersheim (1974a) Musterauswertung durch tectale und thalamus/praetectal Nervennetze im visuellen System der Kröte (Bufo bufo L.). Journal of Comparative Physiology 92:131–48. [arJ-PE]

J.-P. Ewert & A. von Wietersheim (1974b) Der Einfluβ von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L.). Journal of Comparative Physiology 92:149–60. [aJ-PE, DI]

J. C. Fentress (1983) The analysis of behavioral networks. In: Advances in vertebrate neuroethology, ed. J.-P. Ewert , R. R. Capranica , & D. J. Ingle . Plenum. [rJ-PE]

J. C. Fentress & P. McLeod (1986) Motor patterns in development. In: Handbook of neurvbiology: Developmental processes in psychobiology and neurobiology, ed. E. M. Blass . Plenum. [JCF]

T. Finkenstädt , N. T. Adler , T. O. Allen , S. O. E. Ebbesson & J.-P. Ewert (1985) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: A computer assisted analysis of 14C-2DC autoradiographs. Journal of Comparative Physiology 156:433–45. [aJ-PE]

T. Finkenstädt , N. T. Adler , T. O. Allen & J.-P. Ewert (1986) Regional distribution of glucose utilization in the telencephalon of toads in response to configurational visual stimuli: A 14C-2DC study. Journal of Comparative Physiology 158:457–67. [aJ-PE]

T. Finkenstädt & J.-P. Ewert (1983a) Processing of area dimensions of visual key stimuli by tectal neurons in Salamandra salamandra. Journal of Comparative Physiology 153:8598. [aJ-PE, SOEE]

T. Finkenstädt & J.-P. Ewert (1983b) Visual pattern discrimination through interactions of neural networks: A combined electrical brain stimulation, brain lesion, and extracellular recording study in Salamandra salamandra. Journal of Comparative Physiology 153:99110. [aJ-PE]

T. Finkenstädt & J.-P. Ewert (1985) Glucose utilization in the toad's brain during anesthesia and stimulation of the ascending reticular arousal system: A 14C-2-deoxyglueose study. Naturwissenschaften 72:161–62. [arJ-PE]

K. V. Fite & F. Scalia (1976) Central visual pathways in the frog. In: The amphibian visual system: A multidisciplinary approach, ed. K. V. Fite . Academic Press. [aJ-PE]

J. A. Freeman & J. J. Norden (1984) Neurotransmitters in the optic tectum of non mammalians. In: Comparative neurology of the optic tectum, ed. H. Vanegas . Plenum. [aJ-PE]

A. F. Fuchs , C. R. S. Kaneko & C. A. Scudder (1985) Brainstem control of saccadic eye movements. Annual Review of Neuroscience 8:307–37. [RWD]

K. Fukushima (1986) A neural network model for selective attention in visual pattern recognition. Biological Cybernetics 55:515. [GE]

F. Gaillard & G. Galand (1979) Diencephalic binocular wide field neurons in the frog. Experimental Brain Research 34:511–20. [aJ-PE]

W. R. Garner (1966) To perceive is to know. American Psychologist 21:1119. [aJ-PE]

R. M. Gaze (1958) The representation of the retina on the optic lobe of the frog. Quarterly Journal of Experimental Physiology 43:209–14. [aJ-PE]

H. C. Gerhardt (1981) Mating call recognition in the green tree frog (Hyla cinerea): Importance of two frequency bands as a function of sound pressure level. Journal of Comparative Physiology 144:916. [aJ-PE]

P. A. Getting & M. S. Dekin (1985) Tritonia swimming: A model system for integration within rhythmic motor systems. In: Model neural networks and behavior, ed. A. I. Selverston . Plenum. [JMC]

J. J. Gibson (1951) What is form? Psychological Review 58:403–12. [aJ-PE]

R. Gillette , M. P. Kovac & W. J. Davis (1978) Command neurons in Pleurobranchaea receive synaptic feedback from the motor network they excite. Science 199:798801. [aJ-PE]

I. Golani & J. C. Fentress (1985) Early ontogeny of face grooming in mice. Developmental Psychobiology 18:529–44. [JCF]

F. Gonzalez-Lima & H. Scheich (1984) Functional activation in the auditory system of the rat produced by arousing reticular stimulation: A 2-Deoxyglucose study. Brain Research 299:201–14. [rJ-PE, GE]

M. A. Goodale (1983b) Neural mechanisms of visual orientation in rodents: Targets versus places. In: Spatially oriented behavior, ed. A. Hein & M. Jeannerod . Springer-Verlag. [MAG]

J. Gordon & D. C. Hood (1976) Anatomy and physiology of the frog retina. In: The amphibian visual system: A multidisciplinary approach, ed. K. V. Fite . Plenum. [aJ-PE]

J. L. Gould & P. Marler (1987) Learning by instinct. Scientific American 256(1):6273. [JMC]

A. M. Graybiel (1978) Satellite system of the superior colliculus: The parabigeminal nucleus and its projections to the superficial collicular layers. Brain Research 145:365–75. [rJ-PE]

P. Grobstein (1983) Review of Analysis of visual behavior. Animal Behaviour 31:621–22. [PG]

P. Grobstein (1986) Review of The brain machine. Journal of the American Medical Association 255:2677–78. [PG]

P. Grobstein & C. Comer (1983) The nucleus isthmi as an intertectal relay for the ipsilateral oculotectal projection in the frog, Rana pipiens. Journal of Comparative Neurology 217:5474. [rJ-PE]

P. Grobstein , C. Comer & S. K. Kostyk (1983) Frog prey capture behavior: Between sensory maps and directed motor output. In: Advances in vertebrate neuroethology, ed. J.-P. Ewert , R. R. Capranica & D. J. Ingle . Plenum. [arJ-PE, CMC, PG]

E. R. Gruberg & J. Y. Lettvin (1980) Anatomy and physiology of a binocular system in the frog Rana pipiens. Brain Research 192:313–25. [aJ-PE, EG]

E. R. Gruberg & S. B. Udin (1978) Topographic projections between the nucleus isthmi and the tectum of the frog Rana pipens. Journal of Comparative Neurology 179:487500. [aJ-PE]

O.-J. Grüsser & U. Grüsser-Cornehls (1968) Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Zeitschrift für vergleichende Physiologie 59:124. [aJ-PE]

O.-J. Grüsser & U. Grüsser-Cornehls (1976) Neurophysiology of the anuran visual system. In: Frog neurobiology, ed. R. Llinás & W. Precht . Springer-Verlag. [aJ-PE, GS]

U. Grüsser-Cornehls (1984) The neurophysiology of the amphibian optic tectum. In: Comparative neurology of the optic tectum, ed. H. Vanegas . Plenum. [aJ-PE]

K. Guha , C. B. Jørgensen & L. O. Larsen (1980) Relationship between nutritional state and testes function, together with observations on patterns of feeding in the toad, Bufo bufo bufo. Journal of Zoology (London) 192:147–55. [aJ-PE]

W. Hanke (1976) Neuroendocrinology. In: Frog neurobiology, ed. R. Llinás & W. Precht . Springer-Verlag. [aJ-PE]

W. Heiligenberg (1983) The jamming avoidance response in an electric fish: Algorithms in sensory information processing and their neuronal realization. In: Advances in vertebrate neuroethology, ed. J.-P. Ewert , R. R. Capranica & D. J. Ingle . Plenum. [aJ-PE]

C. J. Herrick (1933) The amphibian forebrain. 8: Cerebral hemispheres and pallial primordia. Journal of Comparative Neurology 58:737–59. [arJ-PE]

W. Himstedt , U. Freidank & E. Singer (1976) Die Veränderung eines Auslösemechanismus im Beutefangverhalten während der Entwicklung von Salamandra salamandra (L.). Zeitschrift für Tierpsychologie 41:235–43. [aJ-PE]

D. C. Hood & J. Gordon (1981) The frog ganglion cell: Not a feature detector and not a monkey cortical cell. Perception 10:421–22. [aJ-PE]

G. Horn (1985) Memory, imprinting and the brain: An inquiry into mechanisms. Clarendon Press. [JCF]

G. Hoyle , ed. (1977) Identified neurons and behavior of arthropods. Plenum. [aJ-PE]

D. H. Hubel & T. N. Wiesel (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology 160:106–54. [aJ-PE, KAS]

F. Huber (1983) Implications of insect neuroethology for studies on vertebrates. In: Advances in vertebrate neuroethology, ed. J.-P. Ewert , R. R. Capranica & D. J. Ingle . Plenum. [arJ-PE]

F. Huber & J. Thorson (1985) Cricket auditory communication. Scientific American 253(6):4654. [JMC]

D. Ingle (1968) Visual releasers of prey-catching behavior in frogs and toads. Brain, Behavior and Evolution 1:500518. [aJ-PE, DI]

D. Ingle (1973) Disinhibition of tectal neurons by pretectal lesions in the frog. Science 180:422–24. [aJ-PE, DI]

D. Ingle (1973a) Size preference for prey catching in frogs: Relationship to motivational state. Behavioral Biology 9:485–91. [DI]

D. Ingle (1973b) Two visual systems in the frog. Science 181:1053–55. [JMC]

D. Ingle (1975) Selective visual attention in frogs. Science 188:1033–35. [aJ-PE]

D. Ingle (1976) Spatial vision in anurans. In: The amphibian visual system: A multidisciplinary approach, ed. K. V. Fite . Academic Press. [aJ-PE, DI]

D. Ingle (1977) Detection of stationary objects by frogs (Rana pipiens) after ablation of optic tectum. Journal of Comparative Physiology and Psychology 91:1359–64. [aJ-PE, DI]

D. Ingle (1980) Some effects of pretectum lesions on the frog's detection of stationary objects. Behavioral Brain Research 1:139–63. [aJ-PE, DI]

D. Ingle (1983a) Brain mechanisms of visual localization by frogs and toads. In: Advances in vertebrate neuroethology, ed. J.-P. Ewert , R. R. Capranica & D. J. Ingle . Plenum. [arJ-PE, DI]

D. Ingle & D. McKinley (1977) Some effects of stimulus configuration on prey-catching behavior by the toad, Bufo marinus. Animal Behaviour 26:885–91. [DI]

H. Ito , A. B. Butler & S. O. E. Ebbesson (1980) An ultrastructural study of the normal synaptic organization of the optic tectum and the contralateral tectum in a teleost, Holocentrus rufus. Journal of Comparative Neurology 191:639–60. [SOEE]

M. Jeannerod (1985) The brain machine. Harvard University Press. [PG]

E. R. John & E. L. Schwartz (1978) The neurophysiology of information processing and cognition. Annual Review of Psychology 29:129. [aJ-PE]

O. Katte & K.-P. Hoffmann (1980) Direction specific neurons in the pretectum of the frog (Rana esculenta). Journal of Comparative Physiology 140:5357. [aJ-PE]

E. Kicliter & S. O. E. Ebbesson (1976) Organization of the “non olfactory” telencephalon. In: Frog neurobiology, ed. R. Llinas & W. Precht . Springer-Verlag. [aJ-PE]

M. Konishi (1985) Birdsong: From behavior to neuron. Annual Review of Neuroscience 8:125–70. [aJ-PE]

S. K. Kostyk & P. Grobstein (1982) Visual orienting deficits in frogs with various unilateral lesions. Behavioral Brain Research 6:379–88. [aJ-PE]

R. O. Kuljis & H. J. Karten (1982) Laminar organization of peptide-like immunoreactivity in the anuran optic tectum. Journal of Comparative Neurology 212: 188201. [ar-JPE]

I. Kupfermann , V. Castellucci , H. Pinsker & E. R. Kandel (1970) Neuronal correlates of habituation and dishabituation of the gill withdrawal reflex in Aplysia. Science 167:1743–45. [RD]

P. R. Laming & J.-P. Ewert (1983) The effects of pretectal lesions on neuronal, sustained potential shift and electroencephalographic responses of the toad tectum to presentation of a visual stimulus. Comparative Biochemistry and Physiology 76:247–52. [aJ-PE]

R. Lara & M. A. Arbib (1985) A model of the neural mechanisms responsible for pattern recognition and stimulus specific habituation in toads. Biological Cybernetics 51:223–37. [aJ-PE]

R. Lara , F. Cervantes & M. A. Arbib (1982) Two-dimensional model of retinal-tectal-pretectal interactions for the control of prey-predator recognition and size preference in amphibia. In: Competition and cooperation in neural nets, ed. S. Amari & M. A. Arbib . Springer-Verlag. [aJ-PE]

G. Lázár (1973) Role of accessory optic system in the optokinetic nystagmus of the frog. Brain, Behavior and Evolution 5:443–60. [aJ-PE]

G. Lázár (1984) Structure and connections of the frog optic tectum. In: Comparative neurology of the optic tectum, ed. H. Vanegas . Plenum. [aJ-PE, SOEE]

G. Lázár , P. Tóth , G. Csank & E. Kicliter (1983) Morphology and location of tectal projection neurons in frogs. A study with HRP and cobalt-filling. Journal of Comparative Neurology 215:108–20. [aJ-PE, DI]

R. Llinás & Y. Yarom (1986) Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: An in vitro study. Journal of Physiology-London 376:163–82. [JMC]

K. Lorenz (1935) Der Kumpan in der Umwelt des Vogels. Der Artgenosse als auslösendes Moment sozialer Verhaltensweisen. Journal für Ornithologie 83:137213, 289–413. [aJPE]

K. Lorenz (1943) Die angeborenen Formen Moglicher Erfahrung. Zeitschrift für Tierpsychologie 5:235409. [arJ-PE]

J. Massion , J. Paillard , W. Schultz & M. Wiesendanger , eds. (1983) Neural coding of motor performance. Springer-Verlag. [aJ-PE]

N. Matsumoto , W. W. Schwippert & J.-P. Ewert (1986) Intracellular activity of morphologically identified neurons of the grass frog's optic tectum in response to moving configurational visual stimuli. Journal of Comparative Physiology 159:721–39. [arJ-PE, MAA, JMC, SOEE]

H. R. Maturana , J. Y. Lettvin , W. S. McCulloch & W. H. Pitts (1960) Anatomy and physiology of vision in the frog (Rana pipiens). Journal of General Physiology 43:129–76. [aJ-PE]

V. V. Maximov , O. Yu. Orlov & T. Reuter (1985) Chromatic properties of the retinal afferents in the thalamus and the tectum of the frog (Rana temporaria). Vision Research 25:1037–49. [SLK]

D. A. McCormick & R. F. Thompson (1984) Cerebellum: Essential involvement in the classically conditioned eyelid reflex. Science 223:296–99. [RD]

A. L. Megela , H.-W. Borchers & J.-P. Ewert (1983) Relation between activity of tectal neurons and prey-catching behavior in toads Bufo bufo. Naturwissenschaften 70:100101. [aJ-PE]

T. Nagel (1974) What is it like to be a bat? Philosophical Review 83:435–50. [DD]

T. J. Neary & R. G. Northcutt (1983) Nuclear organization of the bullfrog diencephalon. Journal of Comparative Neurology 213:262–78. [aJ-PE]

R. Nieuwenhuys & P. Opdam (1976) Structure of the brain stem. In: Frog neurobiology, ed. R. Llinas & W. Precht . Springer-Verlag. [aJ-PE]

T. G. Nolen & R. R. Hoy (1984) Initiation of behavior by single neurons: The role of behavioral context. Science 226:992–94. [RD]

R. G. Northcutt & E. Kicliter (1980) Organization of the amphibian telencephalon. In: Comparative neurology of the telencephalon, ed. S. O. E. Ebbesson . Plenum. [aJ-PE]

A. Parent (1973) Distribution of monoamine-containing neurons in the brainstem of the frog. Rana temporaria. Journal for Morphology 139:6778. [arJ-PE]

J. Pearl & M. Tarsi (1986) Structuring causal trees. Journal of Complexity 2:6077. [GAH]

K. G. Pearson (1985) Are there central pattern generators for walking and flight in insects? In: Feedback and motor control in invertebrates and vertebrates, ed. W. J. P. Barnes & M. Gladden . Croom Helm. [JCF]

D. I. Perrett & E. T. Rolls (1983) Neural mechanisms underlying the visual analysis of faces. In: Advances in vertebrate neuroethology, ed. J.-P. Ewert , R. R. Capranica & D. J. Ingle . Plenum. [arJ-PE]

A. Reiner , S. E. Brauth & H. J. Karten (1984) Evolution of the amniote basal ganglia. Trends in Neurosciences 7:320–25. [arJ-PE]

A. Reiner , S. E. Brauth , C. A. Kitt & H. J. Karten (1980) Basal ganglionic pathways to the tectum: Studies in reptiles. Journal of Comparative Neurology 193:565–89. [rJ-PE]

A. Reiner , H. J. Karten & N. C. Brecha (1982) Enkephalin-mediated basal ganglia influences over the optic tectum: Immunohistochemistry of the tectum and the lateral spiriform nucleus in pigeon. Journal of Comparative Neurology 208:3753. [arJ-PE]

R. E. Ritzmann & A. J. Pollack (1986) Identification of thoracic interneurons that mediate giant interneuron-to-motor pathways in the cockroach. Journal of Comparative Physiology 159:639–54. [JMC]

R. E. Ritzmann , M. L. Tobias & C. R. Fourtner (1980) Flight activity initiated via giant intemeurons of the cockroach: Evidence for bifunctional trigger intemeurons. Science 210:443–45. [JMC]

G. Roth (1976) Experimental analysis of the prey catching behavior of Hydromantes italicus Dunn (Amphibia, Plethodontidae). Journal of Comparative Physiology 109:4758. [rJ-PE]

G. Roth (1982) Responses in the optic tectum of the salamander Hydromantes italicus to moving prey stimuli. Experimental Brain Research 45:386–92. [aJ-PE, GR]

G. Roth & M. Jordan (1982) Response characteristics and stratification of tectal neurons in the toad Bufo bufo (L.). Experimental Brain Research 45:393–98. [aJ-PE]

A. Roucoux , D. Guitton & M. Crommelinck (1980) Stimulation of the superior colliculus in the alert cat. 2. Eye and head movements evoked when the head is unrestrained. Experimental Brain Research 39:7585. [AR]

E. Rubinson (1968) Projections of the tectum opticum of the frog. Brain, Behavior and Evolution 1:529–61. [aJ-PE]

D. F. Russel & D. K. Hartline (1978) Bursting neural networks: A reexamination. Science 200:453–55. [aJ-PE]

M. Satou & J.-P. Ewert (1984) Specification of tecto-motor outflow in toads by antidromic stimulation of tecto-bulbar/spinal pathways. Naturwissenschaften 71:52. [CMC]

M. Satou & J.-P. Ewert (1985) The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad, Bufo bufo (L. Journal of Comparative Physiology 157:739–48. [aJ-PE]

F. Scalia (1976) The optic pathway of the frog: Nuclear organization and connections. In: Frog neurobiology, ed. R. Llinás & W. Precht . Springer-Verlag. [aJ-PE]

H. Scheich (1983) Sensorimotor interfacing. In: Advances in vertebrate neuroethology, ed. J.-P. Ewert , R. R. Capranica & D. J. Ingle . Plenum Press. [aJ-PE]

K. Schildberger (1984) Temporal selectivity of identified auditory neurons in the cricket brain. Journal of Comparative Physiology 155:171–85. [JMC]

W. M. Schleidt (1961) Reaktionen von Trüthuhnem auf fliegende Raubvögel und Versuche zur Analyse ihrer AAMs. Zeitschrift für Tierpsychologie 18:534–60. [aJ-PE]

W. M. Schleidt (1962) Die historische Entwicklung der Begriffe “Angeborenes auslösendes Schema” und “Angeborener Auslösemechanismus” in der Ethologie. Zeitschrift für Tierpsychologie 19:697722. [aJ-PE]

W. M. Schleidt (1974) How “fixed” is the fixed action pattern? Zeitschrift für Tierpsychologie 36:184211. [rJ-PE]

G. E. Schneider (1969) Two visual systems. Science 163:895902. [aJ-PE, MAG]

E. Schürg-Pfeiffer & J.-P. Ewert (1981) Investigation of neurons involved in the analysis of Gestalt prey features in the frog fiana temporaria. Journal of Comparative Physiology 141:139–52. [arJ-PE, DI]

A. I. Selverston (1980) Are central pattern generators understandable? Behavioral and Brain Sciences 3:535–71. [aJ-PE]

J. Sklansky & G. N. Wassel (1981) Pattern classifiers and trainable machines. Springer-Verlag. [MAA]

J. Sprague (1966) Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science 153:1544–47. [EG]

E. Stellar (1954) The physiology of motivation. Psychological Reviews 61:522. [rJ-PE]

G. Székely & G. Lázár (1976) Cellular and synaptic architecture of the optictectum. In: Frog neurobiology, ed. R. Llinás & W. Precht . Springer-Verlag. [arJ-PE]

G. Székely , G. Lévai & K. Matesz (1983) Primary afferent terminals in the nucleus of the solitary tract of the frog: An electron microscopic study. Experimental Brain Research 53:109–17. [rJ-PE]

R. F. Thompson & W. A. Spencer (1966) Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychological Reviews 73:1642. [RD]

N. Tinbergen & D. J. Kuenen (1939) Ü0ber die auslösenden und richtungsgebenden Reizsituationen der Sperrbewegung von jungen Drosseln (Turdus m. merula L.) und T.e.ericetorum Turdon). Zeitschrift für Tierpsychologie 3:3760. [aJ-PE]

M. C. Trachtenberg & D. Ingle (1974) Thalamo-tectal projections in the frog. Brain Research 79:419–30. [aJ-PE]

H.-J. Tsai & J.-P. Ewert (1987) Edge preference of retinal and tectal neurons in common toads (Bufo blifo) in response to worm-like moving stripes: The question of behaviorally relevant “position indicators.” Journal of Comparative Physiology 161:295304. [rJ-PE]

M. von Frey (1910) Physiologie der Sinnesorgane der mesenchlichen Haut. Ergebnisse der Physiologie 9:351–68. [GS]

E. von Hoist & H. Mittelstaedt (1950) Das Reafferenzprinzip. Naturwissenschaften 37:464–76. [aJ-PE]

A. von Wietersheim & J.-P. Ewert (1978) Neurons of the toad's (Bufo bufo L.) visual system sensitive to moving configurational stimuli: A statistical analysis. Journal of Comparative Physiology 126:3542. [arJ-PE]

A. Weerasuriya (1983) Snapping in toads: Some aspects of sensorimotor interfacing and motor pattern generation. In: Advances in vertebrate neuroethology, ed. J.-P. Ewert , R. R. Capranica & D. J. Ingle . Plenum. [aJ-PE]

A. Weerasuriya & J.-P. Ewert (1981) Prey-selective neurons in the toad's optic tectum and sensori-motor interfacing: HRP studies and recording experiments. Journal of Comparative Physiology 144:429–34. [aJ-PE]

C. A. G. Wiersma & K. Ikeda (1964) Intemeurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comparative Biochemistry and Physiology 12:509525. [aJ-PE]

W. Wilczynski & R. G. Northcutt (1977) Afferents to the optic tectum of the leopard frog: An HRP study. Journal of Comparative Neurology 173:219–29. [aJ-PE]

W. Wilczynski & R. G. Northcutt (1983a) Connections of the bullfrog striatum: Efferent projections. Journal of Comparative Neurology 214:333–43. [aJ-PE]

W. Wilczynski & R. G. Northcutt (1983b) Connections of the bullfrog striatum: Afferent organization. Journal of Comparative Neurology 214:321–32. [arJ-PE]

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Behavioral and Brain Sciences
  • ISSN: 0140-525X
  • EISSN: 1469-1825
  • URL: /core/journals/behavioral-and-brain-sciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: