Skip to main content

Prototypes and portability in artificial neural network models

  • Thomas R. Shultz (a1)

The Page target article is interesting because of apparent coverage of many psychological phenomena with simple, unified neural techniques. However, prototype phenomena cannot be covered because the strongest response would be to the first-learned stimulus in each category rather than to a prototype stimulus or most frequently presented stimuli. Alternative methods using distributed coding can also achieve portability of network knowledge.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Behavioral and Brain Sciences
  • ISSN: 0140-525X
  • EISSN: 1469-1825
  • URL: /core/journals/behavioral-and-brain-sciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 51 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th November 2017. This data will be updated every 24 hours.