Skip to main content
×
×
Home

Attachment to stainless steel by Mir Space Station bacteria growing under modeled reduced gravity at varying nutrient concentrations

  • P. W. Baker (a1) and L. G. Leff (a1)
Abstract

Four bacterial isolates (Chryseobacterium sp., Pseudomonas fluorescens and two Stenotrophomonas maltophilia isolates) originally isolated from the water system aboard the Mir Space Station were grown in two concentrations of nutrient broth under modeled reduced gravity using clinorotation. Sampling was performed over a 7 day period and planktonic cells were enumerated using 4′,6-diamidino-2-phenylindole (DAPI), while those attached to stainless steel were enumerated using the LIVE/DEAD® BacLight™ kit and DAPI. On some of the sampling days for all the isolates, planktonic cell counts were higher under modeled reduced gravity as compared with the normal gravity controls. In contrast, the number of cells of P. fluorescens and one S. maltophilia isolate attached to the stainless steel disks was higher under modeled reduced gravity as compared with normal gravity, whereas no such differences were observed for Chryseobacterium sp. and the other S. maltophilia isolate. Differences in motility among isolates appeared to influence the growth of planktonic cells under modeled reduced gravity but did not appear to be related to biofilm formation.

Copyright
Corresponding author
Corresponding author: Dr L. G. Leff, Department of Biological Sciences, Kent State University, Kent, OH 44242, USA T 1 330 672 3788, F 1 330 672 3713, E lleff@kent.edu
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Biofilms
  • ISSN: 1479-0505
  • EISSN: 1479-0513
  • URL: /core/journals/biofilms
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed