Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-5628d Total loading time: 0.192 Render date: 2021-05-09T05:33:10.373Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Avian population trends in Scalesia forest on Floreana Island (2004-2013): Acoustical surveys cannot detect hybrids of Darwin’s tree finches Camarhynchus spp.

Published online by Cambridge University Press:  13 March 2017

KATHARINA J. PETERS
Affiliation:
School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
SONIA KLEINDORFER
Affiliation:
School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
Corresponding

Summary

Floreana Island has the highest proportion of local land bird extinctions on the Galápagos Archipelago, and is home to the range-restricted and critically endangered Medium Tree Finch Camarhynchus pauper. We used acoustic surveys during 2004, 2008 and 2013 to compare the estimated population size of C. pauper and other land bird species in a remnant patch of Scalesia forest. First, we compared song in C. pauper and C. parvulus and the recently discovered Camarhynchus hybrid group to justify our use of acoustic surveys to detect population trends given contemporary hybridisation between C. pauper and C. parvulus. Song differed significantly between C. pauper versus C. parvulus and hybrid birds, but not between C. parvulus versus hybrid birds. Second, we compared population size estimates. Camarhynchus pauper declined by 52% between 2004 and 2013 (with a 10% increase since 2008); C. parvulus/hybrid increased by 45% between 2004 and 2013 (with 28% decrease since 2008). In 2013, there were ∼ 419 C. pauper males in the Scalesia forest (estimate for Scalesia habitat only) and ∼ 2,537 males on Floreana Island (estimate for the entire available highland habitat). Not all species showed a pattern of decline in the highland Scalesia habitat between 2004 and 2013: Dendroica petechia (+256%), Crotophaga ani (+254%) Geospiza fuliginosa (+23%), and Myiarchus magnirostris (+11%) increased, while the ground finch G. fortis (-76%) decreased. Understanding why C. pauper is declining while other land bird species are increasing in the same habitat requires continued inquiry and monitoring efforts.

Type
Research Article
Copyright
Copyright © BirdLife International 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Allendorf, F. W., Leary, R. F., Spruell, P. and Wenburg, J. K. (2001) The problems with hybrids: Setting conservation guidelines. Trends Ecol. Evol. 16: 613622.CrossRefGoogle Scholar
Andersone, Ž., Lucchini, V. and Ozoliņš, J. (2002) Hybridisation between wolves and dogs in Latvia as documented using mitochondrial and microsatellite DNA markers. Mammal. Biol. - Z. Säugetierk. 67: 7990.CrossRefGoogle Scholar
Baillie, J. E. M., Hilton-Taylor, C. and Stuart, S. N. (2004) 2004 IUCN Red List of Threatened species. A global species assessment. Cambridge. UK: IUCN Press.Google Scholar
Baskett, M. L. and Gomulkiewicz, R. (2011) Introgressive hybridization as a mechanism for species rescue. Theor. Ecol. 4: 223239.CrossRefGoogle Scholar
Bowman, R. I. (1983) The evolution of song in Darwin’s finches. In Bowman, R. I., Berson, M. and Leviton, A. E., eds. Patterns of evolution in Galápagos Organisms. San Francisco, California, USA: Pacific Division AAAS.Google Scholar
Bowman, R. I., Berson, M., Leviton, A. E. and American Association for the Advancement of Science. Pacific Division. (1983) Patterns of evolution in Galapagos organisms. San Francisco, California: Pacific Division, AAAS.Google Scholar
Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. and Thomas, L. (2001) Introduction to distance sampling. New York, USA: Oxford University Press.Google Scholar
Catchpole, C. K. and Slater, P. J. (2003) Bird song: biological themes and variations. Cambridge, UK: Cambridge University Press.Google Scholar
Christensen, R., Kleindorfer, S. and Robertson, J. (2006) Song is a reliable signal of bill morphology in Darwin’s small tree finch Camarhynchus parvulus, and vocal performance predicts male pairing success. J. Avian Biol. 37: 617624.CrossRefGoogle Scholar
Connett, L., Guézou, A., Herrera, H. W., Carrión, V., Parker, P. G. and Deem, S. L. (2013) Gizzard contents of the smooth-billed ani Crotophaga ani in Santa Cruz, Galápagos Islands, Ecuador. Galápagos Research, 68. Published online, 15 November 2013.Google Scholar
Cunninghame, F., Ortiz-Catedral, L. and Fessl, B. (2012) Landbird conservation plan: Strategies for reversing the decline of passerine birds on the Galapagos Islands. In Secondary report of the workshop: Searching for solutions for the control of the avian parasite, Philornis downsi, Puerto Ayora, Santa Cruz, Galápagos. Vol. 31. Puerto Ayora, Santa Cruz, Galapagos: Charles Darwin Foundation and Galapagos National Park Service.Google Scholar
Dawson, D. K. and Efford, M. G. (2009) Bird population density estimated from acoustic signals. J. Appl. Ecol. 46: 12011209.CrossRefGoogle Scholar
Derégnaucourt, S., Guyomarc’h, J. C. and Richard, V. (2001) Classification of hybrid crows in quail using artificial neural networks. Behav. Process. 56: 103112.CrossRefGoogle ScholarPubMed
Driscoll, D. A. (1998) Counts of calling males as estimates of population size in the endangered frogs Geocrinia alba and G. vitellina. J. Herpetol. 32: 475481.CrossRefGoogle Scholar
Dvorak, M., Fessl, B., Nemeth, E., Kleindorfer, S. and Tebbich, S. (2012) Distribution and abundance of Darwin’s finches and other land birds on Santa Cruz Island, Galápagos: evidence for declining populations. Oryx 46: 78.CrossRefGoogle Scholar
Dvorak, M., Vargas, H., Fessl, B. and Tebbich, S. (2004) On the verge of extinction: a survey of the mangrove finch Cactospiza heliobates and its habitat on the Galápagos Islands. Oryx 38: 171179.CrossRefGoogle Scholar
Fowler, A. C., Eadie, J. M. and Engilis, A Jr. (2009) Identification of endangered Hawaiian ducks (Anas wyvilliana), introduced North American mallards (A. platyrhynchos) and their hybrids using multilocus genotypes. Conserv. Genet, 10: 17471758.CrossRefGoogle Scholar
Goodale, E. and Podos, J. (2010) Persistence of song types in Darwin’s finches, Geospiza fortis, over four decades. Biol. Lett. 6: 589592.CrossRefGoogle ScholarPubMed
Grant, B. R. and Grant, P. R. (1993) Evolution of Darwin’s finches caused by a rare climatic event. Proc. R. Soc. Lond. B Biol. Sci. 251: 111117.CrossRefGoogle Scholar
Grant, B. R. and Grant, P. R. (1996) Cultural inheritance of song and its role in the evolution of Darwin’s finches. Evolution 50: 24712487.CrossRefGoogle ScholarPubMed
Grant, P. R. (1986) Ecology and evolution of Darwin’s finches, Princeton, USA: Princeton University Press.Google Scholar
Grant, P. R. and Grant, B. R. (1992) Hybridization of bird species. Science 256: 193197.CrossRefGoogle ScholarPubMed
Grant, P. R. and Grant, B. R. (1997) Hybridization, sexual imprinting, and mate choice. Am. Nat. 149: 128.CrossRefGoogle Scholar
Grant, P. R. and Grant, B. R. (2014a) Synergism of natural selection and introgression in the origin of a new species. Am. Nat. 183: 671681.CrossRefGoogle Scholar
Grant, P. R. and Grant, B. R. (2014b) Synergism of natural selection and introgression in the origin of a new species. Am. Nat. 183: 671681.CrossRefGoogle Scholar
Grant, P., Curry, R. and Grant, B. (2000) A remnant population of the Floreana mockingbird on Champion Island, Galápagos. Biol. Conserv. 92: 285290.CrossRefGoogle Scholar
Grant, P. R., Grant, B. R., Keller, L. F., Markert, J. A. and Petren, K. (2003) Inbreeding and interbreeding in Darwin’s finches. Evolution 57: 29112916.CrossRefGoogle ScholarPubMed
Grant, P. R., Grant, B. R. and Petren, K. (2005a) Hybridization in the recent past. Am. Nat. 166: 5667.CrossRefGoogle Scholar
Grant, P. R., Grant, B. R., Petren, K. and Keller, L. F. (2005b) Extinction behind our backs: the possible fate of one of the Darwin’s finch species on Isla Floreana, Galápagos. Biol. Conserv. 122: 499503.CrossRefGoogle Scholar
Hails, C. (2008) Living planet report 2008. Zürich, Switzerland: WWF International.Google Scholar
Hamilton, J. A. and Miller, J. M. (2016) Adaptive introgression: A resource for management and genetic conservation in a changing climate. Conserv. Biol. 30: 3341.CrossRefGoogle Scholar
Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. and Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. 101: 1481214817.CrossRefGoogle ScholarPubMed
IUCN (2015) The IUCN Red List of Threatened Species. Version 2015.1. www.iucnredlist.org.Google Scholar
Jiménez-Uzcátegui, G., Carrión, V., Zabala, J., Buitrón, P. and Milstead, B. (2008) Status of introduced vertebrates in Galápagos. Pp. 136141 in Galápagos Report 2006–2007. Puerto Ayora, Galapagos, Ecuador: GNPS, GCREG, CDF and GC.Google Scholar
Karanth, K. U. and Nichols, J. D. (2010) Non-invasive survey methods for assessing tiger populations. Pp. 241261 in Tilson, R. and Nyhus, P. J., eds. Tigers of the world: The science, politics and conservation of Panthera tigris. London, UK and Burlington, MA: Academic Press.CrossRefGoogle Scholar
Kleindorfer, S. and Dudaniec, R. Y. (2016) Host-parasite ecology, behavior and genetics: a review of the introduced fly parasite Philornis downsi and its Darwin’s finch hosts. BMC Zoology 1: 119.CrossRefGoogle Scholar
Kleindorfer, S. and Sulloway, F. J. (2016) Naris deformation in Darwin’s finches: experimental and historical evidence for a post-1960s arrival of the parasite Philornis downsi. Global Ecol. Conserv. 7: 122131.CrossRefGoogle Scholar
Kleindorfer, S., Custance, G., Peters, K. J. and Sulloway, F. J. (In review) Parasites change pre-mating signal and blur species boundaries: Philornis downsi and Darwin’s finches (Camarhynchus spp.). PNAS.Google Scholar
Kleindorfer, S., O’Connor, J. A., Dudaniec, R. Y., Myers, S. A., Robertson, J. and Sulloway, F. J. (2014a) Species collapse via hybridization in Darwin’s tree finches. Am. Nat. 183: 325341.CrossRefGoogle Scholar
Kleindorfer, S., Peters, K. J., Custance, G., Dudaniec, R. Y. and O’Connor, J. A. (2014b) Changes in Philornis infestation behavior threaten Darwin’s finch survival. Curr. Zool. 60: 542550.CrossRefGoogle Scholar
Kleindorfer, S., Peters, K. J., Hohl, L. and Sulloway, F. J. (2016) Flight behaviour of an introduced parasite affects its Galápagos Island hosts: Philornis downsi and Darwin’s finches. Pp. 158179 in Weis, J. S. and Sol, D., eds. Biological invasions and behaviour. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Lack, D. L. (1983) Darwin’s finches. Cambridge, UK: Cambridge University Press.Google Scholar
Lambert, K. T. A. and Mcdonald, P. G. (2014) A low-cost, yet simple and highly repeatable system for acoustically surveying cryptic species. Austral. Ecol. 39: 779785.CrossRefGoogle Scholar
López-Pujol, J., Garcia-Jacas, N., Susanna, A. and Vilatersana, R. (2012) Should we conserve pure species or hybrid species? Delimiting hybridization and introgression in the Iberian endemic Centaurea podospermifolia. Biol. Conserv. 152: 271279.CrossRefGoogle Scholar
Marques, T. A., Thomas, L., Ward, J., DiMarzio, N. and Tyack, P. L. (2009) Estimating cetacean population density using fixed passive acoustic sensors: an example with Blainville’s beaked whales. J. Acoust. Soc. Am. 125: 19821994.CrossRefGoogle ScholarPubMed
Marten, K. and Marler, P. (1977) Sound transmission and its significance for animal vocalization. Behav. Ecol. Sociobiol. 2: 271290.CrossRefGoogle Scholar
Martin, T. E., Paine, C. R., Conway, C. J., Hochachka, W. M., Allen, P. and Jenkins, W. (1997) BBIRD field protocol. Montana, USA: University of Montana Cooperative Wildlife Research Unit, US Geological Survey.Google Scholar
Mauchamp, A. (1997) Threats from alien plant species in the Galápagos Islands. Conserv. Biol. 11: 260263.CrossRefGoogle Scholar
McKay, B. D. and Zink, R. M. (2014) Sisyphean evolution in Darwin’s finches. Biol. Rev. 90: 689698.CrossRefGoogle ScholarPubMed
Merlen, G. (2013) Gone, gone… going: The fate of the Vermilion Flycatcher on Darwin’s Islands. Pp. 180188 in Galápagos Report 2011–2012. Puerto Ayora, Galápagos, Ecuador: GNPS, GCREG, CDF and GC.Google Scholar
O’Connor, J. A., Dudaniec, R. Y. and Kleindorfer, S. (2010a) Parasite infestation and predation in Darwin’s small ground finch: contrasting two elevational habitats between islands. J. Trop. Ecol. 26: 285292.CrossRefGoogle Scholar
O’Connor, J. A., Robertson, J. and Kleindorfer, S. (2010b) Video analysis of host-parasite interactions in nests of Darwin’s finches. Oryx 44: 588594.CrossRefGoogle Scholar
O’Connor, J. A., Sulloway, F. J. and Kleindorfer, S. (2010c) Avian population survey in the Floreana highlands: is Darwin’s medium tree finch declining in remnant patches of Scalesia forest? Bird Conserv. Internatn. 20: 343353.CrossRefGoogle Scholar
O’Connor, J. A., Sulloway, F. J., Robertson, J. and Kleindorfer, S. (2010d) Philornis downsi parasitism is the primary cause of nestling mortality in the critically endangered Darwin’s medium tree finch (Camarhynchus pauper). Biodivers. Conserv. 19: 853866.CrossRefGoogle Scholar
Olivares, A. and Munves, J. A. (1973) Predatory behaviour of the smooth-billed ani. The Auk 90: 891.Google Scholar
Ottenburghs, J., Ydenberg, R. C., Van Hooft, P., Van Wieren, S. E. and Prins, H. H. (2015) The Avian hybrids project: gathering the scientific literature on avian hybridization. Ibis 157: 892894.CrossRefGoogle Scholar
Parker, P. G., Buckles, E. L., Farrington, H., Petren, K., Whiteman, N. K., Ricklefs, R. E., Bollmer, J. L. and Jimenez-Uzcategui, G. (2011) 110 years of Avipoxvirus in the Galápagos Islands. PLoS One 6: e15989.CrossRefGoogle ScholarPubMed
Peters, K. J. (2016) Unravelling the dynamics of hybridisation and its implications for ecology and conservation of Darwin’s tree finches. PhD Thesis, Flinders University, Adelaide, South Australia.Google Scholar
Peters, K. J. and Kleindorfer, S. (2015) Divergent foraging behavior in a hybrid zone: Darwin’s tree finches (Camarhynchus spp.) on Floreana Island. Curr. Zool. 61: 181190.CrossRefGoogle Scholar
Podos, J. (2001) Correlated evolution of morphology and vocal signal structure in Darwin’s finches. Nature 409: 185188.CrossRefGoogle ScholarPubMed
Rentería, J. L., Gardener, M. R., Panetta, F. D., Atkinson, R. and Crawley, M. J. (2012) Possible Impacts of the invasive plant Rubus niveus on the native vegetation of the Scalesia forest in the Galápagos Islands. PLoS ONE 7: e48106.CrossRefGoogle ScholarPubMed
Reynolds, R. T., Scott, J. M. and Nussbaum, R. A. (1980) A variable circular-plot method for estimating bird numbers. Condor 82: 309313.CrossRefGoogle Scholar
Rhymer, J. M. and Simberloff, D. (1996) Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27: 83109.CrossRefGoogle Scholar
Roberts, D. G., Gray, C. A., West, R. J. and Ayre, D. J. (2010) Marine genetic swamping: hybrids replace an obligately estuarine fish. Mol. Ecol. 19: 508520.CrossRefGoogle ScholarPubMed
Schluter, D., Price, T. D. and Grant, P. R. (1985) Ecological character displacement in Darwin’s finches. Science 227: 10561059.CrossRefGoogle ScholarPubMed
Scott, J. M., Ramsey, F. L. and Kepler, C. B. (1981) Distance estimation as a variable in estimating bird numbers from vocalizations. Stud. Avian Biol. 6: 334340.Google Scholar
Simberloff, D. (1995) Habitat fragmentation and population extinction of birds. Ibis 137: S105S111.CrossRefGoogle Scholar
Sinclair, A. R., Fryxell, J. M. and Caughley, G. (2009) Wildlife conservation and management. Pp. 217383 in Sinclair, A. R. and Fryxell, J. M., eds. Wildlife ecology, conservation and management. Carlton: Blackwell Publishing.Google Scholar
Steadman, D. W. (1986) Holocene vertebrate fossils from Isla Floreana, Galápagos, Washington DC: Smithsonian Institution Press.Google Scholar
Thomas, L., Buckland, S. T., Burnham, K. P., Anderson, D. R., Laake, J. L., Borchers, D. L. and Strindberg, S. (2006) Distance sampling. Pp. 687697 in El-Shaarawi, A.-H. and Piegorsch, W., eds. Encyclopedia of environmetrics. Chichester, UK: John Wiley and Sons, Ltd.Google Scholar
Toews, D. P. L. and Irwin, D. E. (2008) Cryptic speciation in a Holarctic passerine revealed by genetic and bioacoustic analyses. Mol. Ecol. 17: 26912705.CrossRefGoogle Scholar
Vilà, C., Walker, C., Sundqvist, A.-K., Flagstad, Ø., Andersone, Z., Casulli, A., Kojola, I., Valdmann, H., Halverson, J. and Ellegren, H. (2003) Combined use of maternal, paternal and bi-parental genetic markers for the identification of wolf–dog hybrids. Heredity 90: 1724.CrossRefGoogle ScholarPubMed
Watson, J., Trueman, M., Tufet, M., Henderson, S. and Atkinson, R. (2010) Mapping terrestrial anthropogenic degradation on the inhabited islands of the Galápagos Archipelago. Oryx 44: 7982.CrossRefGoogle Scholar
Whiteman, N. K., Goodman, S. J., Sinclair, B. J., Walsh, T., Cunningham, A. A., Kramer, L. D. and Parker, P. G. (2005) Establishment of the avian disease vector Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) on the Galápagos Islands, Ecuador. Ibis 147: 844847.CrossRefGoogle Scholar
Wiedenfeld, D. A. (2006) Aves, the Galápagos Islands, Ecuador. Check List 2: 127.CrossRefGoogle Scholar
Wiedenfeld, D. A. and Jiménez-Uzcátegui, G. (2008) Critical problems for bird conservation in the Galápagos Islands. Cotinga 29: 2227.Google Scholar
Supplementary material: File

Peters and Kleindorfer supplementary material

Peters and Kleindorfer supplementary material 1

Download Peters and Kleindorfer supplementary material(File)
File 243 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Avian population trends in Scalesia forest on Floreana Island (2004-2013): Acoustical surveys cannot detect hybrids of Darwin’s tree finches Camarhynchus spp.
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Avian population trends in Scalesia forest on Floreana Island (2004-2013): Acoustical surveys cannot detect hybrids of Darwin’s tree finches Camarhynchus spp.
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Avian population trends in Scalesia forest on Floreana Island (2004-2013): Acoustical surveys cannot detect hybrids of Darwin’s tree finches Camarhynchus spp.
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *