Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-x5mqb Total loading time: 0.44 Render date: 2021-12-02T04:49:04.952Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The southern Jiangsu coast is a critical moulting site for Spoon-billed Sandpiper Calidris pygmaea and Nordmann’s Greenshank Tringa guttifer

Published online by Cambridge University Press:  08 May 2020

ZIYOU YANG
Affiliation:
Spoon-billed Sandpiper (Shanghai) Environmental Protection Technology Co., Ltd., Shanghai, 201100, People’s Republic of China.
BENJAMIN J. LAGASSÉ
Affiliation:
Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA.
HUI XIAO
Affiliation:
School of Earth and Environmental Science, University of Queensland, Brisbane, QLD 4072, Australia. CSIRO, EcoSciences Precinct, 41 Boggo Road, Dutton Park, Qld 4102, Australia.
MICHA V. JACKSON
Affiliation:
School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
CHUNG-YU CHIANG
Affiliation:
Centre for Tropical Ecology and Biodiversity, Tunghai University, Taiwan.
DAVID S. MELVILLE
Affiliation:
1261 Dovedale Road, RD 2 Wakefield, Nelson 7096, New Zealand.
KAR SIN KATHERINE LEUNG
Affiliation:
Hong Kong Waterbirds Ringing Group.
JING LI
Affiliation:
Spoon-billed Sandpiper (Shanghai) Environmental Protection Technology Co., Ltd., Shanghai, 201100, People’s Republic of China.
LIN ZHANG
Affiliation:
Spoon-billed Sandpiper (Shanghai) Environmental Protection Technology Co., Ltd., Shanghai, 201100, People’s Republic of China.
HE-BO PENG
Affiliation:
Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, The Netherlands. NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, Den Burg, Texel, The Netherlands.
XIAOJING GAN
Affiliation:
The Paulson Institute (U.S.), Unit 919, Tower 1, Beijing Sun Dong An Plaza, 138 Wang Fu Jing Street, Dong Cheng District, Beijing, China.
WEN-LIANG LIU
Affiliation:
School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People’s Republic of China.
ZHIJUN MA
Affiliation:
Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200433, People’s Republic of China.
CHI-YEUNG CHOI*
Affiliation:
School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia. School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
*
*Author for correspondence, email: choimo@yahoo.com

Summary

The extent of intertidal flats in the Yellow Sea region has declined significantly in the past few decades, resulting in severe population declines in several waterbird species. The Yellow Sea region holds the primary stopover sites for many shorebirds during their migration to and from northern breeding grounds. However, the functional roles of these sites in shorebirds’ stopover ecology remain poorly understood. Through field surveys between July and November 2015, we investigated the stopover and moult schedules of migratory shorebirds along the southern Jiangsu coast, eastern China during their southbound migration, with a focus on the ‘Critically Endangered’ Spoon-billed Sandpiper Calidris pygmaea and ‘Endangered’ Nordmann’s Greenshank Tringa guttifer. Long-term count data indicate that both species regularly occur in globally important number in southern Jiangsu coast, constituting 16.67–49.34% and 64.0–80.67% of their global population estimates respectively, and it is highly likely that most adults undergo their primary moult during this southbound migration stopover. Our results show that Spoon-billed Sandpiper and Nordmann’s Greenshank staged for an extended period of time (66 and 84 days, respectively) to complete their primary moult. On average, Spoon-billed Sandpipers and Nordmann’s Greenshanks started moulting primary feathers on 8 August ± 4.52 and 27 July ± 1.56 days respectively, and their moult durations were 72.58 ± 9.08 and 65.09 ± 2.40 days. In addition, some individuals of several other shorebird species including the ‘Endangered’ Great Knot Calidris tenuirostris, ‘Near Threatened’ Bar-tailed Godwit Limosa lapponica, ‘Near Threatened’ Eurasian Curlew Numenius arquata and Greater Sand Plover Charadrius leschenaultii also underwent primary moult. Our work highlights the importance of the southern Jiangsu region as the primary moulting ground for these species, reinforcing that conservation of shorebird habitat including both intertidal flats and supratidal roosting sites in this region is critical to safeguard the future of some highly threatened shorebird species.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altmann, J. (1974) Observational study of behaviour: sampling methods. Behavior 49: 227267.CrossRefGoogle ScholarPubMed
Battley P, F., Rogers, D. I. and Hassell, C. J. (2006) Prebreeding moult, plumage and evidence for a presupplemental moult in the Great Knot Calidris tenuirostris. Ibis 148: 2738.CrossRefGoogle Scholar
BirdLife International (2016) Tringa guttifer. The IUCN Red List of Threatened Species 2016. Downloaded from https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T22693225A93391729.en. on 8 June 2018.CrossRefGoogle Scholar
BirdLife International (2017) Calidris pygmaea. The IUCN Red List of Threatened Species 2017. Downloaded from https://doi.org/10.2305/IUCN.UK.2017-1.RLTS. T22693452A11063282 2.en. on 8 June 2018.CrossRefGoogle Scholar
Cai, F., van Vliet, J., Verburg, P. H. and Pu, L. (2017) Land use change and farmer behavior in reclaimed land in the middle Jiangsu coast, China. Ocean Coast. Manage. 137: 107117.CrossRefGoogle Scholar
Chen, Y., Dong, J., Xiao, X., Ma, Z., Tan, K., Melville, D., Li, B., Lu, H., Liu, J. and Liu, F. (2019) Effects of reclamation and natural changes on coastal wetlands bordering China's Yellow Sea from 1984 to 2015. Land Degrad. Dev. 30: 15331544.Google Scholar
China Coastal Waterbird Census Group (2015) China coastal waterbird census report (Jan. 2010–Dec. 2011). Hong Kong: Hong Kong Birdwatching Society.Google Scholar
Choi, C-Y (2015) The northward migration stopover ecology of Bar-tailed Godwits and Great Knots in the Yalu Jiang estuary, National Nature Reserve, China. PhD thesis. Massey University, New Zealand.Google Scholar
Choi, C-Y, Battley, P. F., Potter, M. A., Rogers, K. G. and Ma, Z. (2015) The importance of Yalu Jiang coastal wetland in the north Yellow Sea to Bar-Tailed Godwits Limosa lapponica and Great Knots Calidris tenuirostris during northward migration. Bird Conserv. Internatn. 25: 5370.CrossRefGoogle Scholar
Choi, C-Y, Gan, X., Hua, N., Wang, Y. and Ma, Z. (2014) The habitat use and home range analysis of Dunlin (Calidris alpina) in Chongming Dongtan, China and their conservation implications. Wetlands 34: 255266.CrossRefGoogle Scholar
Choi, C-Y, Gan, X., Ma, Q., Zhang, K. J., Chen, J. K. and Ma, Z. J. (2009) Body condition and fuel deposition patterns of calidrid sandpipers during migratory stopover. Ardea 97: 6170.CrossRefGoogle Scholar
Choi, C-Y, Jackson, M. V., Gallo-Cajiao, E., Murray, N. J., Clemens, R. S., Gan, X. and Fuller, R. A. (2018) Biodiversity and China’s new Great Wall. Divers. Distrib. 24: 137143.10.1111/ddi.12675CrossRefGoogle Scholar
Choi, C-Y, Rogers, K. G., Gan, X., Clemens, R., Bai, Q-Q, Lilleyman, A., Lindseyf, A., Milton, D. A., Straw, P., Yu, Y-T, Battley, P. F., Fuller, R. A. and Rogers, D. I. (2016) Phenology of southward migration of shorebirds in the East Asian-Australasian Flyway and inferences about stop-over strategies. Emu 116: 178–89.CrossRefGoogle Scholar
Chowdhury, S. U., Foysal, M., Diyan, M. A. A. and Ahmed, S. (2017) Discovery of an important wintering site of the Critically Endangered Spoon-billed Sandpiper Calidris pygmaea in the Meghna estuary, Bangladesh. Bird Conserv. Internatn. 28: 251262.CrossRefGoogle Scholar
Clark, N. A., Anderson, G. Q. A., Li, J., Syroechkovskiy. E. E., Tomkovich, P. S., Zöckler, C., Lee, R. and Green, R. E. (2018) First formal estimate of the world population of the Critically Endangered Spoon-billed Sandpiper Calidris pygmaea. Oryx 52: 137146.CrossRefGoogle Scholar
Crighton, P. (2016) Bird mortality in fish nets at a significant stopover site of the Spoon-billed Sandpiper Calidris pygmaea in the Yellow Sea, China. Stilt 69–70: 7476.Google Scholar
Dietz, M. W., Rogers, K. G., Gutiérrez, J. S. and Piersma, T. (2015) Body mass and latitude both correlate with primary moult duration in shorebirds. Ibis 157: 147153.CrossRefGoogle Scholar
Eiam-ampai, K., Nimnuan, S., Sonsa, T., Sutibut, S. and Round, P. D. (2011) The first record of over-summering Spoon-billed Sandpiper Eurynorhynchus pygmaea in Thailand. Stilt 60: 5657Google Scholar
Erni, B., Bonnevie, B. T., Oschadleus, H-D, Altwegg, R. and Underhill, L. G. (2013) Moult: An R package to analyze moult in birds. J. Stat. Softw. 52: 123.CrossRefGoogle Scholar
Gan, X., Cai, Y., Choi, C-Y, Ma, Z., Chen, J. and Li., Bo. (2009) Potential impacts of invasive Spartina alterniflora on spring bird communities at Chongming Dongtan, a Chinese wetland of international importance. Estuar. Coast. Mar. Sci. 83: 211218.CrossRefGoogle Scholar
Ge, Z., Wang, T., Xiao, Z. and Shi, W. (2006) Seasonal change and habitat selection of shorebird community at the South Yangtze River Mouth and North Hangzhou Bay, China. Acta. Ecol. Sin. 26: 4047.CrossRefGoogle Scholar
Ginn, H. B. and Melville, D. S. (1983) Moult in birds. Tring, UK: British Trust for Ornithology.Google Scholar
Greenwood, J. G. (1983) Post‐nuptial primary moult in Dunlin Calidris alpina. Ibis 125: 223228.CrossRefGoogle Scholar
Howell, S. N. G., Corben, C., Pyle, P. and Rogers, D. I. (2004) The first basic problem revisited: Reply to commentaries on Howell et al. (2003). Condor 106: 206210.CrossRefGoogle Scholar
International Wader Study Group (2003) Waders are declining worldwide. conclusions from the 2003 International Wader Study Group Conference, Cadiz, Spain. Wader Study Group Bull. 101/102: 812.Google Scholar
Iwamura, T., Possingham, H. P., Chadès, I., Minton, C., Murray, N. J., Rogers, D. I., Treml, E. A. and Fuller, R. A. (2013) Migratory connectivity magnifies the consequences of habitat loss from sea-level rise for shorebird populations. Proc. R. Soc. B 280: 20130325.CrossRefGoogle ScholarPubMed
Jackson, C. (2018) The moult and migration strategies of Lesser Sand Plover, Greater Sand Plover and Terek Sandpiper. PhD thesis. University of Cape Town, South Africa.Google Scholar
Jackson, M. V., Carrasco, L. R., Choi, C-Y, Li, J., Ma, Z., Melville, D. S., Mu, T., Peng, H-B, Woodworth, B. K., Yang, Z., Zhang, L. and Fuller, R. A. (2019) Multiple habitat use by declining migratory birds necessitates joined-up conservation. Ecol. Evol. 9: 25052515.CrossRefGoogle ScholarPubMed
Jiangsu Development and Reform Commission and Jiangsu Coastal Areas Development Office (2010) Outline of reclamation and utilization plan for Jiangsu coastal mudflat resources (2010- 2020). Nanjing: Jiangsu Development and Reform Commission, Jiangsu Coastal Areas Development Office [in Chinese].Google Scholar
Lei, Z. (2018) Reclaiming land to be restricted. Downloaded from https://global.chinadaily.com.cn/a/201801/18/WS5a5fc6f3a310e4ebf433e61b.html on 5 February 2018.Google Scholar
Liu, P. (2014) The ecology and biological resources of the radial sand ridges. Pp. 380416 in Ying, W., ed. South Yellow Sea radial sand ridges environment and resources. Beijing: Ocean Press.Google Scholar
Luo, S., Cai, F., Liu, H., Lei, G., Qi, H. and Su, X. (2015) Adaptive measures adopted for risk reduction of coastal erosion in the People’s Republic of China. Ocean. Coast. Manage. 103: 134–45.CrossRefGoogle Scholar
Ma, Z., Wang, Y., Gan, X., Li, B., Cai, Y. and Chen., J. (2009) Waterbird population changes in the wetlands at Chongming Dongtan in the Yangtze River Estuary, China. Environ. Manage. 43: 11871200.10.1007/s00267-008-9247-7CrossRefGoogle ScholarPubMed
MacKinnon, J., Verkuil, Y. I. and Murray, N. J. (2012) IUCN situation analysis on East and Southeast Asian intertidal habitats, with particular reference to the Yellow Sea (including the Bohai Sea). Gland, Switzerland & Cambridge, UK: IUCN. (Occasional Paper of the IUCN Species Survival Commission No 47).Google Scholar
Marchant, J., Hayman, P. and Prater, T. (2010) Shorebirds. London, UK: Bloomsbury Publishing.Google Scholar
Mei, X. and Sun, L. (2013) On conversion of coastal land resources under background of urban-rural integrated development. J. Anhui. Agri. Sci. 41: 1411514116.Google Scholar
Melville, D. S. (2018) China’s coasts – a time for cautious optimism? Wader Study 125: 13.10.18194/ws.00103CrossRefGoogle Scholar
Melville, D. S., Chen, Y. and Ma, Z. (2016) Shorebirds along the Yellow Sea Coast of China face an uncertain future—a review of threats. Emu 116: 100110.CrossRefGoogle Scholar
Moores, N., Rogers, D., Rogers, K. and Hansbro, P. M. (2016) Reclamation of tidal flats and shorebird declines in Saemangeum and elsewhere in the Republic of Korea. Emu 116: 136146.10.1071/MU16006CrossRefGoogle Scholar
Murray, N. J., Ma, Z. and Fuller, R. A. (2015) Tidal flats of the Yellow Sea: a review of ecosystem status and anthropogenic threats. Austral. Ecol. 40: 472481.CrossRefGoogle Scholar
Pearson, D. J. (1984) The moult of the Little Stint Calidris minuta in the Kenyan rift valley. Ibis 126: 115.CrossRefGoogle Scholar
Peng, H-B, Anderson, G. Q. A., Chang, Q., Choi, C-Y, Chowdhury, S. U., Clark, N. A., Gan, X., Hearn, R. D., Li, J., Lappo, E. G., Liu, W-L, Ma, Z., Melville, D. S., Phillips, J. F., Syroechkovskiy, E. E., Tong, M., Wang, S., Zhang, L. and Zöckler, C. (2017) The intertidal wetlands of southern Jiangsu province, China – globally important for Spoon-billed Sandpipers and other threatened waterbirds, but facing multiple serious threats. Bird Conserv. Internatn. 27: 305322.CrossRefGoogle Scholar
Pienkowski, M. W., Knight, P. J., Stanyard, D. J. and Argyle, F. B. (1976) The primary moult of waders on the Atlantic coast of Morocco. Ibis 118: 347365.CrossRefGoogle Scholar
Piersma, T., Chan, Y-C, Mu, T., Hassell, C. J., Melville, D. S., Peng, H-B, Ma, Z., Zhang, Z. and Wilcove, D. S. (2017) Loss of habitat leads to loss of birds: reflections on the Jiangsu, China, coastal development plans. Wader Study 124: 9398.CrossRefGoogle Scholar
Prater, A. J., Marchant, J. H. and Vuorinen, J. (1977) Guide to the identification & ageing of Holarctic waders. Tring, UK: British Trust for Ornithology.Google Scholar
R Core Team (2018) R: A language and environment for statistical computing. The Comprehensive R Archive Network. Downloaded from https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf. on 1 January 2018.Google Scholar
Remisiewicz, M. (2011) The flexibility of primary moult in relation to migration in Palaearctic waders - an overview. Wader Study Group Bull. 118: 141152.Google Scholar
Green, R., Clark, N., Anderson, Guy., Weston, E. and Hughes, B. (2018) Satellite tagging of spoon-billed sandpipers reveals the importance of intertidal habitats in the Democratic People’s Republic of Korea for migration and post-breeding moult. Spoon-billed Sandpiper Task Force News Bull. 19: 3132.Google Scholar
Rogers, D. I., Yang, H-Y, Hassell, C. J., Boyle, A. N., Rogers, K. G., Bing, C., Zhang, Z-W and Piersma, T. (2010) Red Knots (Calidris canutus piersmai and C. c. rogersi) depend on a small threatened staging area in Bohai Bay, China. Emu 110: 307315.CrossRefGoogle Scholar
Round, P. D., Gale, G. A. and Nimnuan, S. (2012) Moult of primaries in Long-toed Stints (Calidris subminuta) at a non-breeding area in Thailand. Ringing Migr. 27: 3237.CrossRefGoogle Scholar
Saito, Y. and Yang, Z. (1995) Historical change of the Huanghe (Yellow River) and its impact on the sediment budget of the East China Sea. Pp. 712 in Tsunogai, S., Iseki, K., Koike, I. and Oba, T., eds. Global fluxes of carbon and its related substances in the coastal sea-ocean-atmosphere system. Yokohama, Japan: M & J International.Google Scholar
Song, W., Yang, G., Xu, H., Miu, D. and Cai, Y. (2014) Preliminary survey of the wild birds of Rudong. J. Jiangsu. For. Sci. Tech. 41: 3036.Google Scholar
Stokstad, E. (2018) China moves to protect coastal wetlands used by migratory birds. Science 359: 500502.Google Scholar
Studds, C. E., Kendall, B. E., Murray, N. J., Wilson, H. B., Rogers, D. I., Clemens, R. S., Gosbell, K., Hassel, C. J., Jessop, R., Melville, D. S., Milton, D. A., Minton, C. D. T., Possingham, H. P., Riegen, A. C., Straw, P., Woehler, E. J. and Fuller, R. A. (2017) Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat. Commun. 8: 14895.CrossRefGoogle ScholarPubMed
Thompson, J. J. (1993) Modeling the local abundance of shorebirds staging on migration. Theor. Popul. Biol. 44: 299315.CrossRefGoogle Scholar
Tong, M., Zhang, L., Li, J., Zöckler, C. and Clark, N. (2012) The critical importance of the Rudong mudflats, Jiangsu province, China in the annual cycle of the Spoon-Billed Sandpiper Calidris pygmeus. Wader Study Group Bull. 119: 7477.Google Scholar
Underhill, L. G. and Joubert, A. (1995) Relative masses of primary feathers. Ringing Migr. 16: 109116.CrossRefGoogle Scholar
Underhill, L. G., Zucchini, W. and Summers, R. W. (1990) A model for avian primary moult data types based on migration strategies and an example using the redshank Tringa totanus. Ibis 132: 118123.CrossRefGoogle Scholar
UNESCO (2019) The coast of the Bohai Gulf and the Yellow Sea of China. Downloaded from https://whc.unesco.org/en/list/1606/ on 13 November 2019.Google Scholar
Vieira, B. P., Furness, R. W. and Nager, R. G. (2017) Using field photography to study avian moult. Ibis 159: 443448.Google Scholar
Wilson, J. R., Nebel, S. and Minton, C. D. T. (2007) Migration ecology and morphometrics of two Bar-tailed Godwit populations in Australia. Emu 107: 262274.Google Scholar
Yao, H., Liu, B., You, Z. and Zhao, L. (2018) Risk perception of aquatic pollution originated from chemical industry clusters in the coastal area of Jiangsu province, China. Environ. Sci. Pollut. Res. 25: 57115721.CrossRefGoogle ScholarPubMed
Zhang, S-D, Ma, Z., Choi, C-Y, Peng, H-B, Bai, Q-Q, Liu, W-L, Tan, K., Melville, D. S., He, P., Chan, Y-C, van Gils, J. A. and Piersma, T. (2018) Persistent use of a shorebird staging site in the Yellow Sea despite severe declines in food resources implies a lack of alternatives. Bird Conserv. Internatn. 28: 534548.10.1017/S0959270917000430CrossRefGoogle Scholar
Zhao, Z-Y., Xu, Y., Yuan, L., Li, W., Zhu, X-J. and Zhang, L-Q. (In press) Emergency control of Spartina alterniflora re-invasion with a chemical method at Chongming Dongtan, China. Water Science and Engineering.Google Scholar
Zhou, H-X, Liu, J-E. and Qin, P. (2009) Impacts of an alien species (Spartina alterniflora) on the macrobenthos community of Jiangsu coastal inter-tidal ecosystem. Ecol. Eng. 35: 521528.CrossRefGoogle Scholar
Zöckler, C. (2017) How many Spoon-billed Sandpipers are there? Spoon-billed Sandpiper Task Force News Bull. 17: 34.Google Scholar
Zöckler, C., Li, D., Chowdhury S, U., Iqbal, Muhammad and Yu, C. (2018) Winter distribution, habitat and feeding behaviour of Nordmann’s Greenshank Tringa guttifer. Wader Study 125: 714.CrossRefGoogle Scholar
Zöckler, C., Li, J. and Clark, N. (2015) Report on intertidal mudflat waterbird survey in the Yellow Sea, autumn 2014. Spoon-billed Sandpiper Task Force News Bull. 13: 912.Google Scholar
Zöckler, C., Syroechkovskiy. E. E. and Atkinson, P. W. (2010) Rapid and continued population decline in the Spoon-billed Sandpiper Eurynorhynchus pygmeus indicates imminent extinction unless conservation action is taken. Bird Conserv. Internatn. 20: 95111.CrossRefGoogle Scholar
Supplementary material: PDF

Yang et al. supplementary material

Yang et al. supplementary material

Download Yang et al. supplementary material(PDF)
PDF 349 KB
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The southern Jiangsu coast is a critical moulting site for Spoon-billed Sandpiper Calidris pygmaea and Nordmann’s Greenshank Tringa guttifer
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The southern Jiangsu coast is a critical moulting site for Spoon-billed Sandpiper Calidris pygmaea and Nordmann’s Greenshank Tringa guttifer
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The southern Jiangsu coast is a critical moulting site for Spoon-billed Sandpiper Calidris pygmaea and Nordmann’s Greenshank Tringa guttifer
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *