Skip to main content
    • Aa
    • Aa

Molecular phylogeny of the South American sheldgeese with implications for conservation of Falkland Islands (Malvinas) and continental populations of the Ruddy-headed Goose Chloephaga rubidiceps and Upland Goose C. picta


Sheldgeese of the genus Chloephaga are waterfowl (Anatidae) endemic to mainland South America and the Falkland Islands (Malvinas). Continental populations of three species C. picta, C. poliocephala, and C. rubidiceps breed in Patagonia and Tierra del Fuego and migrate northwards to winter in central Argentina and Chile. These continental populations have declined by > 50% in the past 30 years due to direct hunting to control crop damage and by the introduction of the grey fox Dusicyon griseus to their breeding grounds in Tierra del Fuego. The continental population of C. rubidiceps is critically endangered, estimated to be < 1,000 individuals. While no historic population size estimates exist for C. rubidiceps in its wintering grounds, the breeding population in Tierra del Fuego was estimated to number several thousand individuals in the 1950s. In contrast, the C. rubidiceps population in the Falkland Islands (Malvinas) is non-migratory and stable with > 42,000 individuals, as is the Falkland Islands (Malvinas) population of C. picta leucoptera with > 138,000 individuals. Here we use sequence data from the mitochondrial DNA control region to quantify genetic divergence between insular and continental populations of these two species of sheldgeese. Chloephaga rubidiceps and C. picta showed significant intraspecific differentiation of 1.0% and 0.6%, respectively. In both cases, mainland and insular populations were reciprocally monophyletic and did not share mtDNA haplotypes. These results suggest that the insular and continental populations of C. rubidiceps and C. picta are genetically distinct and that female-mediated gene flow is restricted. We recommend a reevaluation of the threat category status of the continental C. rubidiceps population, under IUCN guidelines. It is necessary to implement urgent actions for the conservation of this critically endangered population.


El género Chloephaga comprende aves acuáticas (Anatidae) endémicas del continente Sudamericano y las Islas Malvinas. Las poblaciones continentales de tres especies C. picta, C. poliocephala y C. rubidiceps reproducen en Patagonia y Tierra del Fuego y migran hacia el norte para invernar en Argentina y Chile central. Estas poblaciones continentales han declinado > 50% en los últimos 30 años debido a la caza directa para controlar el daño a las cosechas o por la introducción del zorro gris, Dusicyon griseus, en sus áreas de reproducción en Tierra del Fuego. La población continental de C. rubidiceps está en peligro crítico, se estima que quedan < 1000 individuos. Mientras no existen estimaciones históricas del tamaño poblacional para C. rubidiceps en sus áreas de invernada, se estimó que la población reproductiva en Tierra del Fuego consistía de varios miles de individuos en los años ‘50. En cambio, la población de C. rubidiceps de las Islas Malvinas es no migratoria y se considera estable con > 42000 individuos, del mismo modo que la población de C. picta leucoptera de las Islas Malvinas con > 138000 individuos. Aquí usamos la información de secuencias de la región de control del ADN mitocondrial para cuantificar la divergencia genética de las poblaciones insulares y continentales de estas dos especies. Chloephaga rubidiceps y C. picta presentaron una diferenciación intraespecífica significativa del 1% y del 0,6%, respectivamente. En ambos casos, las poblaciones insulares y del continente fueron recíprocamente monofiléticas y no compartieron haplotipos. Estos resultados sugieren que las poblaciones insulares y continentales de C. rubidiceps y C. picta son genéticamente distintas y que el flujo génico mediado por las hembras está restricto. Se recomienda una reevaluación del status de la categoría de amenaza de la población continental de C. rubidiceps, bajo regulaciones de la IUCN. Es necesario implementar acciones urgentes de conservación de esta población en peligro crítico.

Corresponding author
*Author for correspondence; e-mail:
Hide All
AkaikeH. (1973) Information theory and an extension of the maximum likelihood principle. Pp. 267281 in PetrovB. N. and CsakiF., eds. Proceeding of Second International Symposium on Information Theory. Budapest: Akademia Kiado.
BandeltH-J., ForsterP. and RöhlA. (1999) Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16: 3748.
BirdLife International (2012) Species factsheet: Chloephaga rubidiceps. Available at
BlancoD. E. and de la BalzeV. M. (2006) Harvest of migratory geese (Chloephaga spp.) in Argentina: an overview of the present situation. Pp. 870873 in BoereG. C., GalbraithC. A. and StroudD. A., eds. Waterbirds around the world. A global overview of the conservation, management and research of the world’s waterbird flyways. Edinburgh, UK: The Stationery Office.
BlancoD. E., MatusR., de la BalzeV. M., BlankO., MacLeanD., ZalbaS. et al. (2009) Ruddy-headed Geese (Chloephaga rubidiceps) in danger: Population status and conservation actions in Argentina and Chile. Wetlands International Technical Report.
BottemaC. D. K., SarkarG., CassadyJ. D., LiS., DuttonC. M. and SommerS. S. (1993) Polymerase chain reaction amplification of specific alleles: general method of rapidly detecting mutations, polymorphisms, and haplotypes. Methods Enzymol. 218: 388402.
BrownJ. H. and LomolinoM. V. (2000) Concluding remarks: historical perspective and the future of island biogeography theory. Glob. Ecol. Biogeogr. 9: 8792.
BulgarellaM., SorensonM. D., PetersJ. L., WilsonR. E. and McCrackenK. G. (2010) Phylogenetic relationships of Amazonetta, Speculanas, Lophonetta, and Tachyeres: four morphologically divergent duck genera endemic to South America. J. Avian Biol. 41: 186199.
BulgarellaM., PetersJ. L., KopuchianC., ValquiT., WilsonR. E. and McCrackenK. G. (2012) Multilocus coalescent analysis of haemoglobin differentiation between low- and high-altitude populations of crested ducks (Lophonetta specularioides). Mol. Ecol. 21: 350368.
CampagnaL., St ClairJ. J. H., LougheedS. C., WoodsR. W., ImbertiS. and TubaroP. L. (2012) Divergence between passerine populations from the Malvinas – Falkland Islands and their continental counterparts: a comparative phylogeographical study. Biol. J. Linn. Soc. 106: 865879.
CarbonerasC. (1992) Family Anatidae (ducks, geese and swans). Pp. 536628 in del HoyoJ., ElliottA. and SargatalJ., eds. Handbook of the birds of the world, vol. 1. Barcelona, Spain: Lynx Edicions.
CarsonH. L. and TempletonA. R. (1984) Genetic revolutions in relation to speciation phenomena: the founding of new populations. Ann. Rev. Ecol. Syst. 15: 97131.
CleggS. M., DegnanS. M., KikkawaJ., MoritzC., EstoupA. and OwensI. P. F. (2002) Genetic consequences of sequential founder events by an island-colonizing bird. Proc. Natl. Acad. Sci. USA. 99: 81278132.
CrandallK. A., Bininda-EmondsO. R. P., MaceG. M. and WayneR. K. (2000) Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15: 290295.
CrawshayR. (1907) The birds of Tierra del Fuego. London: Bernard Quaritch.
DelacourJ. (1954) The waterfowl of the world. Vol. 1. London: Country Life.
DelacourJ. and MayrE. (1945) The Family Anatidae. Wilson Bull. 57: 355.
Donne-GousséC., LaudetV. and HänniC. (2002) A molecular phylogeny of anseriformes based on mitochondrial DNA analysis. Mol. Phyl. Evol. 23: 339356.
DrummondA. J., AshtonB., BuxtonS., CheungM., CooperA. et al. (2011) Geneious v5.4. Available at
EmersonB. C. (2002) Evolution on oceanic islands: molecular phylogenetic approaches to understanding patterns and processes. Mol. Ecol. 11: 951966.
ExcoffierL. and LischerH. E. L. (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10: 564567.
FelsensteinJ. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783791.
FraserD. J. and BernatchezL. (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol. Ecol. 10: 27412752.
FultonT. L., LettsB. and ShapiroB. (2012) Multiple losses of flight and recent speciation in steamer ducks. Proc. R. Soc. B 279: 23392346.
GonzalezJ., DüttmannH. and WinkM. (2009) Phylogenetic relationships based on two mitochondrial genes and hybridization patterns in Anatidae. J. Zool. 279: 310318.
GreenD. M. (2005) Designatable units for status assessment of endangered species. Conserv. Biol. 19: 18131820.
GuindonS. and GascuelO. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696704.
IUCN (2001) IUCN Red List categories and criteria: Version 3.1. Gland, Switzerland and Cambridge, UK: IUCN Species Survival Commission.
JohnsgardP. A. (1961) The taxonomy of the Anatidae. A behavioural analysis. Ibis 103: 7185.
JohnsgardP. A. (1978) Ducks, geese, and swans of the world. Lincoln, Nebraska: University of Nebraska Press.
KearJ. (2005) Bird families of the world: ducks, geese, and swans. New York: Oxford University Press.
LivezeyB. C. (1997) A phylogenetic analysis of modern sheldgeese and shelducks (Anatidae, Tadornini). Ibis 139: 5166.
LomolinoM. V. (2000) A call for a new paradigm of island biogeography. Glob. Ecol. Biogeogr. 9: 16.
MadsenJ., MatusR., BlankO., BenegasL., MateazziG. and BlancoD. E. (2003) Population status of the Ruddy-headed Goose (Chloephaga rubidiceps) in Tierra del Fuego and mainland Patagonia (Chile and Argentina). Ornit. Neotr. 14: 1528.
MaleyJ. M. and WinkerK. (2010) Diversification at high latitudes: speciation of buntings in the genus Plectrophenax inferred from mitochondrial and nuclear markers. Mol. Ecol. 19: 785797.
McCrackenK. G. and SorensonM. D. (2005) Is homoplasy or lineage sorting the source of incongruent mtDNA and nuclear gene trees in the Stiff-Tailed Ducks (Nomonyx-Oxyura)? Syst. Biol. 54: 3555.
McCrackenK. G., BargerC. P. and SorensonM. D. (2010) Phylogenetic and structural analysis of the HbA (αA/βA) and HbD (αD/βA) hemoglobin genes in two high-altitude waterfowl from the Himalayas and the Andes: Bar-headed goose (Anser indicus) and Andean goose (Chloephaga melanoptera). Mol. Phyl. Evol. 56: 649658.
McCrackenK. G. and WilsonR. E. (2011) Gene flow and hybridization between numerically imbalanced populations of two duck species in the Falkland Islands. PLoS One 6(8): e23173.
McDowallR. M. (2005) Falkland Island biogeography: converging trajectories in the South Atlantic Ocean. J. Biogeogr. 32: 4962.
MoritzC. (1994) Defining ‘Evolutionary Significant Units’ for conservation. Trends Ecol. Evol. 9: 373375.
Pergolani de CostaM. J. I. (1955) Las avutardas: especies que dañan los cereales y las pasturas. IDIA 88: 19.
PetersJ. L., McCrackenK. G., ZhuravlevY. N., LuY., WilsonR. E., JohnsonK. P. and OmlandK. E. (2005) Phylogenetics of wigeons and allies (Anatidae: Anas): the importance of sampling multiple loci and multiple individuals. Mol. Phyl. Evol. 35: 209224.
PetersJ. L., BolenderK. A. and PearceJ. M. (2012) Behavioural vs. molecular sources of conflict between nuclear and mitochondrial DNA: the role of male-biased dispersal in a Holarctic sea duck. Mol. Ecol. 21: 35623575.
PetracciP. F., IbáñezH., ScorolliA., CozzaniN., BlancoD. et al. (2008) Monitoreo poblacional de cauquenes migratorios (Chloephaga spp.) en las provincias de Buenos Aires y Río Negro: Una actualización sobre su estado crítico de conservación. Plan Nacional de Conservación y Manejo de Cauquenes. Buenos Aires, Argentina: Dirección de Fauna Silvestre, Secretaría de Ambiente y Desarrollo Sustentable de la Nación.
PetracciP. F., IbáñezH., ScorolliA., FailláM., BlancoD. et al. (2009) Monitoreo poblacional de cauquenes migratorios (Chloephaga spp.) en las provincias de Buenos Aires y Río Negro, julio de 2008. Plan Nacional de Conservación y Manejo de Cauquenes. Buenos Aires, Argentina: Dirección de Fauna Silvestre, Secretaría de Ambiente y Desarrollo Sustentable de la Nación.
PetracciP. F., IbáñezH., BaigúnR., HollmannF., MacLeanD. et al. (2010) Monitoreo poblacional de cauquenes migratorios (Chloephaga spp.) en las provincias de Buenos Aires y Río Negro, julio de 2009. Plan Nacional de Conservación y Manejo de Cauquenes. Buenos Aires, Argentina: Dirección de Fauna Silvestre, Secretaría de Ambiente y Desarrollo Sustentable de la Nación.
PonceJ. F., RabassaJ., CoronatoA. and BorromeiM. (2011) Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. Biol. J. Linn. Soc. 103: 363379.
PosadaD. and CrandallK. A. (1998) Modeltest: Testing the model of DNA substitution. Bioinformatics 14: 817818.
RabassaJ., CoronatoA. and MartínezO. (2011) Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review. Biol. J. Linn. Soc. 103: 316335.
RohwerF. C. and AndersonM. G. (1988) Female-biased philopatry, monogamy, and the timing of pair formation in migratory waterfowl. Pp. 187221 in JohnstonR. F., ed. Current Ornithology, vol. 5. New York: Plenum Press.
RonquistF. and HuelsenbeckJ. P. (2005) MrBayes: Bayesian inference of phylogenetic trees. Version 3.1. Florida State University.
RumbollM. A. E. (1975) El Cauquén de Cabeza Colorada (Chloephaga rubidiceps): una nota de alarma. Hornero 11: 315316.
ScottP. (1954) South America – 1953. Ann. Rep. Wildfowl Trust 6: 5469.
SonsthagenS. A., TalbotS. L., LanctotR. B., ScribnerK. T. and McCrackenK. G. (2009) Hierarchical spatial genetic structure of Common Eiders (Somateria mollissima) breeding along a migratory corridor. The Auk 126: 744754.
SorensonM. D. and FleischerR. C. (1996) Multiple independent transpositions of mitochondrial DNA control region sequences to the nucleus. Proc. Natl. Acad. Sci. USA. 93: 1523915243.
SorensonM. D. and QuinnT. W. (1998) Numts: A challenge for avian systematics and population biology. The Auk 115: 214221.
SorensonM. D., AstJ. C., DimcheffD. E., YuriT. and MindellD. P. (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol. Phyl. Evol. 12: 105114.
StoreyB. C., CurtisM. L., FerrisJ. K., HunterM. A. and LivermoreR. A. (1999) Reconstruction and break-out model for the Falkland Islands within Gondwana. J. Afr. Earth Sci. 29: 153163.
StrangeI. J. (1992) A field guide to the wildlife of the Falkland Islands and South Georgia. London: Harper Collins.
TamuraK. and NeiM. (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512526.
TempletonA. R. (1980) The theory of speciation via the founding principle. Genetics 94: 10111038.
TrewinN. H., MacDonaldD. I. M. and ThomasC. G. C. (2002) Stratigraphy and sedimentology of the Permian of the Falkland Islands: lithostratigraphic and palaeoenvironmental links with South Africa. J. Geol. Soc. 159: 519.
WellerM. W. (1972) Ecological studies of Falkland Islands’ waterfowl. Wildfowl 23: 2544.
WellerM. W. (1975) Habitat selection by waterfowl of Argentine Isla Grande. Wilson Bull. 87: 8390.
Wetlands International (2006) Waterbird population estimates. Fourth edition. Wageningen: Wetlands International.
WoodsR. W. (1988) Guide to birds of the Falkland Islands. Oswestry, Shropshire, UK: Anthony Nelson.
WoodsR. W. and WoodsA. (2006) Birds and mammals of the Falkland Islands. Maidenhead: WILDGuides.
ZinkR. M. and BarrowcloughG. F. (2008) Mitochondrial DNA under siege in avian phylogeography. Mol. Ecol. 17: 21072121.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bird Conservation International
  • ISSN: 0959-2709
  • EISSN: 1474-0001
  • URL: /core/journals/bird-conservation-international
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary Materials

BULGARELLA et al. supplementary material
Supplementary figures

 Word (71 KB)
71 KB


Altmetric attention score

Full text views

Total number of HTML views: 3
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 183 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th October 2017. This data will be updated every 24 hours.