Skip to main content
    • Aa
    • Aa

Molecular phylogeny of the South American sheldgeese with implications for conservation of Falkland Islands (Malvinas) and continental populations of the Ruddy-headed Goose Chloephaga rubidiceps and Upland Goose C. picta


Sheldgeese of the genus Chloephaga are waterfowl (Anatidae) endemic to mainland South America and the Falkland Islands (Malvinas). Continental populations of three species C. picta, C. poliocephala, and C. rubidiceps breed in Patagonia and Tierra del Fuego and migrate northwards to winter in central Argentina and Chile. These continental populations have declined by > 50% in the past 30 years due to direct hunting to control crop damage and by the introduction of the grey fox Dusicyon griseus to their breeding grounds in Tierra del Fuego. The continental population of C. rubidiceps is critically endangered, estimated to be < 1,000 individuals. While no historic population size estimates exist for C. rubidiceps in its wintering grounds, the breeding population in Tierra del Fuego was estimated to number several thousand individuals in the 1950s. In contrast, the C. rubidiceps population in the Falkland Islands (Malvinas) is non-migratory and stable with > 42,000 individuals, as is the Falkland Islands (Malvinas) population of C. picta leucoptera with > 138,000 individuals. Here we use sequence data from the mitochondrial DNA control region to quantify genetic divergence between insular and continental populations of these two species of sheldgeese. Chloephaga rubidiceps and C. picta showed significant intraspecific differentiation of 1.0% and 0.6%, respectively. In both cases, mainland and insular populations were reciprocally monophyletic and did not share mtDNA haplotypes. These results suggest that the insular and continental populations of C. rubidiceps and C. picta are genetically distinct and that female-mediated gene flow is restricted. We recommend a reevaluation of the threat category status of the continental C. rubidiceps population, under IUCN guidelines. It is necessary to implement urgent actions for the conservation of this critically endangered population.


El género Chloephaga comprende aves acuáticas (Anatidae) endémicas del continente Sudamericano y las Islas Malvinas. Las poblaciones continentales de tres especies C. picta, C. poliocephala y C. rubidiceps reproducen en Patagonia y Tierra del Fuego y migran hacia el norte para invernar en Argentina y Chile central. Estas poblaciones continentales han declinado > 50% en los últimos 30 años debido a la caza directa para controlar el daño a las cosechas o por la introducción del zorro gris, Dusicyon griseus, en sus áreas de reproducción en Tierra del Fuego. La población continental de C. rubidiceps está en peligro crítico, se estima que quedan < 1000 individuos. Mientras no existen estimaciones históricas del tamaño poblacional para C. rubidiceps en sus áreas de invernada, se estimó que la población reproductiva en Tierra del Fuego consistía de varios miles de individuos en los años ‘50. En cambio, la población de C. rubidiceps de las Islas Malvinas es no migratoria y se considera estable con > 42000 individuos, del mismo modo que la población de C. picta leucoptera de las Islas Malvinas con > 138000 individuos. Aquí usamos la información de secuencias de la región de control del ADN mitocondrial para cuantificar la divergencia genética de las poblaciones insulares y continentales de estas dos especies. Chloephaga rubidiceps y C. picta presentaron una diferenciación intraespecífica significativa del 1% y del 0,6%, respectivamente. En ambos casos, las poblaciones insulares y del continente fueron recíprocamente monofiléticas y no compartieron haplotipos. Estos resultados sugieren que las poblaciones insulares y continentales de C. rubidiceps y C. picta son genéticamente distintas y que el flujo génico mediado por las hembras está restricto. Se recomienda una reevaluación del status de la categoría de amenaza de la población continental de C. rubidiceps, bajo regulaciones de la IUCN. Es necesario implementar acciones urgentes de conservación de esta población en peligro crítico.

Corresponding author
*Author for correspondence; e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

H-J. Bandelt , P. Forster and A. Röhl (1999) Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16: 3748.

C. D. K. Bottema , G. Sarkar , J. D. Cassady , S. Li , C. M. Dutton and S. S. Sommer (1993) Polymerase chain reaction amplification of specific alleles: general method of rapidly detecting mutations, polymorphisms, and haplotypes. Methods Enzymol. 218: 388402.

J. H. Brown and M. V. Lomolino (2000) Concluding remarks: historical perspective and the future of island biogeography theory. Glob. Ecol. Biogeogr. 9: 8792.

M. Bulgarella , M. D. Sorenson , J. L. Peters , R. E. Wilson and K. G. McCracken (2010) Phylogenetic relationships of Amazonetta, Speculanas, Lophonetta, and Tachyeres: four morphologically divergent duck genera endemic to South America. J. Avian Biol. 41: 186199.

M. Bulgarella , J. L. Peters , C. Kopuchian , T. Valqui , R. E. Wilson and K. G. McCracken (2012) Multilocus coalescent analysis of haemoglobin differentiation between low- and high-altitude populations of crested ducks (Lophonetta specularioides). Mol. Ecol. 21: 350368.

L. Campagna , J. J. H. St Clair , S. C. Lougheed , R. W. Woods , S. Imberti and P. L. Tubaro (2012) Divergence between passerine populations from the Malvinas – Falkland Islands and their continental counterparts: a comparative phylogeographical study. Biol. J. Linn. Soc. 106: 865879.

H. L. Carson and A. R. Templeton (1984) Genetic revolutions in relation to speciation phenomena: the founding of new populations. Ann. Rev. Ecol. Syst. 15: 97131.

S. M. Clegg , S. M. Degnan , J. Kikkawa , C. Moritz , A. Estoup and I. P. F. Owens (2002) Genetic consequences of sequential founder events by an island-colonizing bird. Proc. Natl. Acad. Sci. USA. 99: 81278132.

K. A. Crandall , O. R. P. Bininda-Emonds , G. M. Mace and R. K. Wayne (2000) Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15: 290295.

C. Donne-Goussé , V. Laudet and C. Hänni (2002) A molecular phylogeny of anseriformes based on mitochondrial DNA analysis. Mol. Phyl. Evol. 23: 339356.

B. C. Emerson (2002) Evolution on oceanic islands: molecular phylogenetic approaches to understanding patterns and processes. Mol. Ecol. 11: 951966.

L. Excoffier and H. E. L. Lischer (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10: 564567.

J. Felsenstein (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783791.

D. J. Fraser and L. Bernatchez (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol. Ecol. 10: 27412752.

T. L. Fulton , B. Letts and B. Shapiro (2012) Multiple losses of flight and recent speciation in steamer ducks. Proc. R. Soc. B 279: 23392346.

J. Gonzalez , H. Düttmann and M. Wink (2009) Phylogenetic relationships based on two mitochondrial genes and hybridization patterns in Anatidae. J. Zool. 279: 310318.

D. M. Green (2005) Designatable units for status assessment of endangered species. Conserv. Biol. 19: 18131820.

S. Guindon and O. Gascuel (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696704.

B. C. Livezey (1997) A phylogenetic analysis of modern sheldgeese and shelducks (Anatidae, Tadornini). Ibis 139: 5166.

M. V. Lomolino (2000) A call for a new paradigm of island biogeography. Glob. Ecol. Biogeogr. 9: 16.

J. M. Maley and K. Winker (2010) Diversification at high latitudes: speciation of buntings in the genus Plectrophenax inferred from mitochondrial and nuclear markers. Mol. Ecol. 19: 785797.

K. G. McCracken and M. D. Sorenson (2005) Is homoplasy or lineage sorting the source of incongruent mtDNA and nuclear gene trees in the Stiff-Tailed Ducks (Nomonyx-Oxyura)? Syst. Biol. 54: 3555.

K. G. McCracken , C. P. Barger and M. D. Sorenson (2010) Phylogenetic and structural analysis of the HbA (αA/βA) and HbD (αD/βA) hemoglobin genes in two high-altitude waterfowl from the Himalayas and the Andes: Bar-headed goose (Anser indicus) and Andean goose (Chloephaga melanoptera). Mol. Phyl. Evol. 56: 649658.

K. G. McCracken and R. E. Wilson (2011) Gene flow and hybridization between numerically imbalanced populations of two duck species in the Falkland Islands. PLoS One 6(8): e23173.

R. M. McDowall (2005) Falkland Island biogeography: converging trajectories in the South Atlantic Ocean. J. Biogeogr. 32: 4962.

C. Moritz (1994) Defining ‘Evolutionary Significant Units’ for conservation. Trends Ecol. Evol. 9: 373375.

J. L. Peters , K. G. McCracken , Y. N. Zhuravlev , Y. Lu , R. E. Wilson , K. P. Johnson and K. E. Omland (2005) Phylogenetics of wigeons and allies (Anatidae: Anas): the importance of sampling multiple loci and multiple individuals. Mol. Phyl. Evol. 35: 209224.

J. L. Peters , K. A. Bolender and J. M. Pearce (2012) Behavioural vs. molecular sources of conflict between nuclear and mitochondrial DNA: the role of male-biased dispersal in a Holarctic sea duck. Mol. Ecol. 21: 35623575.

J. F. Ponce , J. Rabassa , A. Coronato and M. Borromei (2011) Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. Biol. J. Linn. Soc. 103: 363379.

D. Posada and K. A. Crandall (1998) Modeltest: Testing the model of DNA substitution. Bioinformatics 14: 817818.

J. Rabassa , A. Coronato and O. Martínez (2011) Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review. Biol. J. Linn. Soc. 103: 316335.

S. A. Sonsthagen , S. L. Talbot , R. B. Lanctot , K. T. Scribner and K. G. McCracken (2009) Hierarchical spatial genetic structure of Common Eiders (Somateria mollissima) breeding along a migratory corridor. The Auk 126: 744754.

M. D. Sorenson and R. C. Fleischer (1996) Multiple independent transpositions of mitochondrial DNA control region sequences to the nucleus. Proc. Natl. Acad. Sci. USA. 93: 1523915243.

M. D. Sorenson and T. W. Quinn (1998) Numts: A challenge for avian systematics and population biology. The Auk 115: 214221.

M. D. Sorenson , J. C. Ast , D. E. Dimcheff , T. Yuri and D. P. Mindell (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol. Phyl. Evol. 12: 105114.

B. C. Storey , M. L. Curtis , J. K. Ferris , M. A. Hunter and R. A. Livermore (1999) Reconstruction and break-out model for the Falkland Islands within Gondwana. J. Afr. Earth Sci. 29: 153163.

N. H. Trewin , D. I. M. MacDonald and C. G. C. Thomas (2002) Stratigraphy and sedimentology of the Permian of the Falkland Islands: lithostratigraphic and palaeoenvironmental links with South Africa. J. Geol. Soc. 159: 519.

R. M. Zink and G. F. Barrowclough (2008) Mitochondrial DNA under siege in avian phylogeography. Mol. Ecol. 17: 21072121.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bird Conservation International
  • ISSN: 0959-2709
  • EISSN: 1474-0001
  • URL: /core/journals/bird-conservation-international
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary Materials

BULGARELLA et al. supplementary material
Supplementary figures

 Word (71 KB)
71 KB


Altmetric attention score

Full text views

Total number of HTML views: 2
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 153 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd August 2017. This data will be updated every 24 hours.