Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-xt4p2 Total loading time: 1.111 Render date: 2022-05-27T19:27:11.319Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Binge eating among young adults: association with sociodemographic factors, nutritional intake, dietary n-6:n-3 ratio and impulsivity

Published online by Cambridge University Press:  14 January 2021

Maryse Khoury
Affiliation:
Laboratoire de pharmacologie, pharmacie clinique et contrôle de qualité des médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon
Santa Chamsine
Affiliation:
Laboratoire de pharmacologie, pharmacie clinique et contrôle de qualité des médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon
Camil Merheb
Affiliation:
Laboratoire de pharmacologie, pharmacie clinique et contrôle de qualité des médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon
Edouard Arfoul
Affiliation:
Laboratoire de pharmacologie, pharmacie clinique et contrôle de qualité des médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon
Maria Rached
Affiliation:
Laboratoire de pharmacologie, pharmacie clinique et contrôle de qualité des médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon
Farah Younes
Affiliation:
Laboratoire de pharmacologie, pharmacie clinique et contrôle de qualité des médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon
Nada El Osta
Affiliation:
Department of Removable Prosthodontics, Faculty of Dental Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon Equipe d’accueil EA 4847, Centre de Recherche en Odontologie Clinique (CROC), Université Clermont Auvergne, Clermont-Ferrand, France Laboratoire de Recherche Cranio-Faciale, Unité de Santé Orale, Faculty of Dental Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
Sophie Laye
Affiliation:
Nutrition et Neurobiologie Intégrée, Inrae, Université de Bordeaux, Bordeaux, France
Carla Aoun
Affiliation:
Laboratoire de pharmacologie, pharmacie clinique et contrôle de qualité des médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon Department of Nutrition, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon
Tatiana Papazian
Affiliation:
Laboratoire de pharmacologie, pharmacie clinique et contrôle de qualité des médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon Department of Nutrition, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon
Lydia Rabbaa Khabbaz*
Affiliation:
Laboratoire de pharmacologie, pharmacie clinique et contrôle de qualité des médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon
*
*Corresponding author: Professor Lydia Rabbaa Khabbaz, email lydia.khabbaz@usj.edu.lb

Abstract

Binge eating behaviour (BE) is the major symptom of binge eating disorder (BED). This study aimed to compare the nutritional intake in the presence or absence of BE, with a particular focus on dietary n-6:n-3 ratio, to assess the association between BE and impulsivity and the mediating effect of BMI on this association. A total of 450 university students (age 18–28 years) participated. The self-administered questionnaires were a semi-quantitative FFQ and the UPPS-P Impulsive Behavior Scale and the binge eating scale. The average BE score was 11·6 (se 7·388), and 20 % of the total participants scored above the cut-off of 17, thus presenting BE with 95 % CI of 16·3, 23·7 %. Our study revealed that greater BMI, higher total energy intake, greater negative urgency and positive urgency scores were significantly associated with BE. Participants with high value of dietary n-6:n-3 ratio were 1·335 more at risk to present a BE compared with those with a lower value of this ratio (P = 0·017). The relationship between BE score and UPPS domains score was not mediated by the BMI. This is the first study reporting a link between high dietary n-6:n-3 ratio and BE as well as the fact that BE was linked to both, negative and positive urgencies, and that the association between BE and impulsivity was not mediated by BMI. These findings can help to deal more efficiently with people suffering from BE, a symptom that can precede the development of BED.

Type
Full Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders, 5th ed. American Psychiatric Association. https://psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596 (accessed February 2012).CrossRefGoogle Scholar
Attia, E, Becker, AE, Bryant-Waugh, R, et al. (2013) Feeding and eating disorders in DSM-5. Am J Psychiatry 170, 12371239.10.1176/appi.ajp.2013.13030326CrossRefGoogle ScholarPubMed
Walsh, BT & Sysko, R (2009) Broad Categories for the Diagnosis of Eating Disorders (BCD-ED): an alternative system for classification. Int J Eat Disord 42, 754764.10.1002/eat.20722CrossRefGoogle Scholar
Lydecker, JA, Ivezaj, V & Grilo, CM (2020) Testing the validity and clinical utility of the severity specifiers for binge-eating disorder for predicting treatment outcomes. J Consult Clin Psychol 88, 172178.10.1037/ccp0000464CrossRefGoogle ScholarPubMed
Gan, WY, Mohamad, N & Law, LS (2018) Factors associated with binge eating behavior among Malaysian adolescents. Nutrients 10, 66.10.3390/nu10010066CrossRefGoogle ScholarPubMed
Lee-Winn, A, Mendelson, T & Mojtabai, R (2014) Racial/ethnic disparities in binge eating: disorder prevalence, symptom presentation, and help-seeking among Asian Americans and non-Latino Whites. Am J Public Health 104, 12631265.10.2105/AJPH.2014.301932CrossRefGoogle ScholarPubMed
Davison, KM, Marshall-Fabien, GL & Gondara, L (2014) Sex differences and eating disorder risk among psychiatric conditions, compulsive behaviors and substance use in a screened Canadian national sample. Gen Hosp Psychiatry 36, 411414.10.1016/j.genhosppsych.2014.04.001CrossRefGoogle Scholar
Rolland, B, Naassila, M, Duffau, C, et al. (2017) Binge eating, but not other disordered eating symptoms, is a significant contributor of binge drinking severity: findings from a cross-sectional study among French students. Front Psychol 8, 1878.CrossRefGoogle Scholar
Hudson, JI, Hiripi, E, Pope, HG, et al. (2007) The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol Psychiatry 61, 348358.10.1016/j.biopsych.2006.03.040CrossRefGoogle ScholarPubMed
Kessler, RC, Berglund, PA, Chiu, WT, et al. (2013) The prevalence and correlates of binge eating disorder in the World Health Organization World Mental Health Surveys. Biol Psychiatry 73, 904914.10.1016/j.biopsych.2012.11.020CrossRefGoogle ScholarPubMed
Striegel, RH, Bedrosian, R, Wang, C, et al. (2012) Why men should be included in research on binge eating: results from a comparison of psychosocial impairment in men and women. Int J Eat Disord 45, 233240.CrossRefGoogle ScholarPubMed
Barry, DT, Grilo, CM & Masheb, RM (2002) Gender differences in patients with binge eating disorder. Int J Eat Disord 31, 6370.10.1002/eat.1112CrossRefGoogle ScholarPubMed
Grilo, CM, Masheb, RM, Brody, M, et al. (2005) Binge eating and self-esteem predict body image dissatisfaction among obese men and women seeking bariatric surgery. Int J Eat Disord 37, 347351.10.1002/eat.20130CrossRefGoogle ScholarPubMed
Nagata, JM, Garber, AK, Tabler, JL, et al. (2018) Prevalence and correlates of disordered eating behaviors among young adults with overweight or obesity. J Gen Intern Med 33, 13371343.10.1007/s11606-018-4465-zCrossRefGoogle ScholarPubMed
Cotrufo, P, Barretta, V, Monteleone, P, et al. (1998) Full-syndrome, partial-syndrome and subclinical eating disorders: an epidemiological study of female students in Southern Italy. Acta Psychiatr Scand 98, 112115.10.1111/j.1600-0447.1998.tb10051.xCrossRefGoogle ScholarPubMed
Grant, JE & Chamberlain, SR (2014) Impulsive action and impulsive choice across substance and behavioral addictions: cause or consequence? Addic Behav 39, 16321639.10.1016/j.addbeh.2014.04.022CrossRefGoogle ScholarPubMed
Schulte, EM, Grilo, CM & Gearhardt, AN (2016) Shared and unique mechanisms underlying binge eating disorder and addictive disorders. Clin Psychol Rev 44, 125139.10.1016/j.cpr.2016.02.001CrossRefGoogle ScholarPubMed
Loxton, NJ (2018) The role of reward sensitivity and impulsivity in overeating and food addiction. Curr Addict Rep 5, 212222.10.1007/s40429-018-0206-yCrossRefGoogle Scholar
Aoun, C, Nassar, L, Soumi, S, et al. (2019) The cognitive, behavioral, and emotional aspects of eating habits and association with impulsivity, chronotype, anxiety, and depression: a cross-sectional study. Front Behav Neurosci 13, 204.10.3389/fnbeh.2019.00204CrossRefGoogle ScholarPubMed
Fedorowicz, VJ, Falissard, B, Foulon, C, et al. (2007) Factors associated with suicidal behaviors in a large French sample of inpatients with eating disorders. Int J Eat Disord 40, 589595.10.1002/eat.20415CrossRefGoogle Scholar
Lilenfeld, LRR (2011) Personality and temperament. In Behavioral Neurobiology of Eating Disorders, pp. 316 [Adan, RAH and Kaye, WH, editors]. New York: Springer-Verlag Publishing.Google Scholar
Lee-Winn, AE, Townsend, L, Reinblatt, SP, et al. (2016) Associations of neuroticism and impulsivity with binge eating in a nationally representative sample of adolescents in the United States. Personal Individ Differ 90, 6672.CrossRefGoogle Scholar
Munsch, S, Meyer, AH, Quartier, V, et al. (2012) Binge eating in binge eating disorder: a breakdown of emotion regulatory process? Psychiatry Res 195, 118124.CrossRefGoogle ScholarPubMed
Stein, RI, Kenardy, J, Wiseman, CV, et al. (2007) What’s driving the binge in binge eating disorder? A prospective examination of precursors and consequences. Int J Eat Disord 40, 195203.10.1002/eat.20352CrossRefGoogle ScholarPubMed
Fischer, S, Smith, GT & Cyders, MA (2008) Another look at impulsivity: a meta-analytic review comparing specific dispositions to rash action in their relationship to bulimic symptoms. Clin Psychol Rev 28, 14131425.CrossRefGoogle Scholar
Waxman, SE (2009) A systematic review of impulsivity in eating disorders. Eur Eat Disord Rev 17, 408425.10.1002/erv.952CrossRefGoogle ScholarPubMed
Combs, JL, Pearson, CM & Smith, GT (2011) A risk model for preadolescent disordered eating. Int J Eat Disord 44, 596604.10.1002/eat.20851CrossRefGoogle ScholarPubMed
Fischer, S, Settles, R, Collins, B, et al. (2012) The role of negative urgency and expectancies in problem drinking and disordered eating: testing a model of comorbidity in pathological and at-risk samples. Psychol Addict Behav 26, 112123.10.1037/a0023460CrossRefGoogle Scholar
Chamberlain, SR, Derbyshire, KL, Leppink, E, et al. (2015) Obesity and dissociable forms of impulsivity in young adults. CNS Spectr 20, 500507.10.1017/S1092852914000625CrossRefGoogle ScholarPubMed
Wu, M, Giel, KE, Skunde, M, et al. (2013) Inhibitory control and decision making under risk in bulimia nervosa and binge-eating disorder. Int J Eat Disord 46, 721728.10.1002/eat.22143CrossRefGoogle ScholarPubMed
Galioto, R, Spitznagel, MB, Strain, G, et al. (2012) Cognitive function in morbidly obese individuals with and without binge eating disorder. Compr Psychiatry 53, 490495.CrossRefGoogle ScholarPubMed
Davis, C, Patte, K, Curtis, C, et al. (2010) Immediate pleasures and future consequences. A neuropsychological study of binge eating and obesity. Appetite 54, 208213.10.1016/j.appet.2009.11.002CrossRefGoogle ScholarPubMed
Al Massadi, O, Pardo, M, Roca-Rivada, A, et al. (2010) Macronutrients act directly on the stomach to regulate gastric ghrelin release. J Endocrinol Invest 33, 599602.CrossRefGoogle ScholarPubMed
Segura-García, C, De Fazio, P, Sinopoli, F, et al. (2014) Food choice in disorders of eating behavior: correlations with the psychopathological aspects of the diseases. Compr Psychiatry 55, 12031211.10.1016/j.comppsych.2014.02.013CrossRefGoogle ScholarPubMed
Pompili, S & Laghi, F (2019) Binge eating and binge drinking among adolescents: the role of drinking and eating motives. J Health Psychol 24, 15051516.10.1177/1359105317713359CrossRefGoogle ScholarPubMed
Ledoux, S, Choquet, M & Manfredi, R (1993) Associated factors for self-reported binge eating among male and female adolescents. J Adolesc 16, 7591.10.1006/jado.1993.1006CrossRefGoogle ScholarPubMed
Lee, S, Gura, KM, Kim, S, et al. (2006) Current clinical applications of omega-6 and omega-3 fatty acids. Nutr Clin Pract 21, 323341.10.1177/0115426506021004323CrossRefGoogle ScholarPubMed
Pusceddu, MM, Nolan, YM, Green, HF, et al. (2016) The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) reverses corticosterone-induced changes in cortical neurons. Int J Neuropsychopharmacol 19, pyv130.Google ScholarPubMed
Calder, PC, Bosco, N, Bourdet-Sicard, R, et al. (2017) Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res Rev 40, 95119.10.1016/j.arr.2017.09.001CrossRefGoogle ScholarPubMed
Ruiz-León, AM, Lapuente, M, Estruch, R, et al. (2019) Clinical advances in immunonutrition and atherosclerosis: a review. Front Immunol 10, 837.10.3389/fimmu.2019.00837CrossRefGoogle ScholarPubMed
de la Presa Owens, S & Innis, SM (1999) Docosahexaenoic and arachidonic acid prevent a decrease in dopaminergic and serotoninergic neurotransmitters in frontal cortex caused by a linoleic and alpha-linolenic acid deficient diet in formula-fed piglets. J Nutr 129, 20882093.CrossRefGoogle ScholarPubMed
Sinn, N, Milte, C & Howe, PRC (2010) Oiling the brain: a review of randomized controlled trials of omega-3 fatty acids in psychopathology across the lifespan. Nutrients 2, 128170.CrossRefGoogle ScholarPubMed
Bozzatello, P, Brignolo, E, De Grandi, E, et al. (2016) Supplementation with omega-3 fatty acids in psychiatric disorders: a review of literature data. J Clin Med 5, 67.10.3390/jcm5080067CrossRefGoogle ScholarPubMed
Bozzatello, P, Rocca, P, Mantelli, E, et al. (2019) Polyunsaturated fatty acids: what is their role in treatment of psychiatric disorders? Int J Mol Sci 20, 5257.CrossRefGoogle ScholarPubMed
Cadenhead, KS, Minichino, A, Kelsven, S, et al. (2019) Metabolic abnormalities and low dietary omega 3 are associated with symptom severity and worse functioning prior to the onset of psychosis: findings from the North American Prodrome Longitudinal Studies Consortium. Schizophr Res 204, 96103.10.1016/j.schres.2018.09.022CrossRefGoogle ScholarPubMed
Sethom, MM, Fares, S, Bouaziz, N, et al. (2010) Polyunsaturated fatty acids deficits are associated with psychotic state and negative symptoms in patients with schizophrenia. Prostaglandins Leukot Essent Fatty Acids 83, 131136.10.1016/j.plefa.2010.07.001CrossRefGoogle ScholarPubMed
Lin, P-Y, Huang, S-Y & Su, K-P (2010) A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol Psychiatry 68, 140147.10.1016/j.biopsych.2010.03.018CrossRefGoogle ScholarPubMed
Beydoun, MA, Fanelli Kuczmarski, MT, Beydoun, HA, et al. (2013) ω-3 Fatty acid intakes are inversely related to elevated depressive symptoms among United States women. J Nutr 143, 17431752.10.3945/jn.113.179119CrossRefGoogle ScholarPubMed
Rutkofsky, IH, Khan, AS, Sahito, S, et al. (2017) The psychoneuroimmunological role of omega-3 polyunsaturated fatty acids in major depressive disorder and bipolar disorder. Adv Mind Body Med 31, 816.Google ScholarPubMed
Polokowski, AR, Shakil, H, Carmichael, CL, et al. (2020) Omega-3 fatty acids and anxiety: a systematic review of the possible mechanisms at play. Nutr Neurosci 23, 494504.10.1080/1028415X.2018.1525092CrossRefGoogle ScholarPubMed
Swenne, I & Rosling, A (2012) Omega-3 essential fatty acid status is improved during nutritional rehabilitation of adolescent girls with eating disorders and weight loss. Acta Paediatr 101, 858861.10.1111/j.1651-2227.2012.02684.xCrossRefGoogle ScholarPubMed
Caspar-Bauguil, S, Montastier, E, Galinon, F, et al. (2012) Anorexia nervosa patients display a deficit in membrane long chain poly-unsaturated fatty acids. Clin Nutr 31, 386390.10.1016/j.clnu.2011.11.015CrossRefGoogle ScholarPubMed
Tabachnick, BG & Fidell, LS (2019) Using Multivariate Statistics, 7th ed. Boston, MA: Pearson.Google Scholar
Aoun, C, Bou Daher, R, El Osta, N, et al. (2019) Reproducibility and relative validity of a food frequency questionnaire to assess dietary intake of adults living in a Mediterranean country. PLOS ONE 14, e0218541.10.1371/journal.pone.0218541CrossRefGoogle Scholar
Papazian, T, Hout, H, Sibai, D, et al. (2016) Development, reproducibility and validity of a food frequency questionnaire among pregnant women adherent to the Mediterranean dietary pattern. Clin Nutr 35, 15501556.10.1016/j.clnu.2016.04.015CrossRefGoogle ScholarPubMed
Aoun, C, Papazian, T, Helou, K, et al. (2019) Comparison of five international indices of adherence to the Mediterranean diet among healthy adults: similarities and differences. Nutr Res Pract 13, 333343.CrossRefGoogle ScholarPubMed
WHO (1993) Physical Status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee. Technical Report Series no. 854. Geneva: WHO.Google Scholar
Johnson, DA, Drake, C & Joseph, CLM (2015) Influence of neighbourhood-level crowding on sleep-disordered breathing severity: mediation by body size. J Sleep Res 24, 559565.10.1111/jsr.12305CrossRefGoogle ScholarPubMed
Pikó, B & Pinczés, T (2014) Impulsivity-aggression-depression: study of adolescents’ problem behavior in light of their personality traits. Psychiatr Hung Magy Pszichiatriai Tarsasag Tudomanyos Folyoirata 29, 4855.Google Scholar
Geurten, M, Catale, C, Gay, P, et al. (2018) Measuring impulsivity in children: adaptation and validation of a short version of the UPPS-P impulsive behaviors scale in children and investigation of its links with ADHD. J Atten Disord 25, 105114.CrossRefGoogle Scholar
Gormally, J, Black, S, Daston, S, et al. (1982) The assessment of binge eating severity among obese persons. Addict Behav 7, 4755.CrossRefGoogle ScholarPubMed
Marcus, MD, Wing, RR & Hopkins, J (1988) Obese binge eaters: affect, cognitions, and response to behavioural weight control. J Consult Clin Psychol 56, 433439.10.1037/0022-006X.56.3.433CrossRefGoogle ScholarPubMed
Alhyas, L, McKay, A, Balasanthiran, A, et al. (2011) Prevalences of overweight, obesity, hyperglycaemia, hypertension and dyslipidaemia in the Gulf: systematic review. JRSM Short Rep 2, 55.10.1258/shorts.2011.011019CrossRefGoogle ScholarPubMed
Ng, SW, Zaghloul, S, Ali, HI, et al. (2011) The prevalence and trends of overweight, obesity and nutrition-related non-communicable diseases in the Arabian Gulf States. Obes Rev Off J Int Assoc Study Obes 12, 113.10.1111/j.1467-789X.2010.00750.xCrossRefGoogle ScholarPubMed
Zeeni, N, Safieddine, H & Doumit, R (2017) Eating disorders in Lebanon: directions for public health action. Commun Ment Health J 53, 117125.CrossRefGoogle ScholarPubMed
Schulte, SJ (2016) Predictors of binge eating in male and female youths in the United Arab Emirates. Appetite 105, 312319.10.1016/j.appet.2016.06.004CrossRefGoogle ScholarPubMed
Rabie, M, Abo-El-Ez, N & Salah-El-Din, M (2010) Anxiety and social anxiety symptoms among overweight females seeking treatment for obesity. Curr Psychiatry 17, 1320.Google Scholar
Fitzsimmons-Craft, EE, Bardone-Cone, AM & Kelly, KA (2011) Objectified body consciousness in relation to recovery from an eating disorder. Eat Behav 12, 302308.10.1016/j.eatbeh.2011.09.001CrossRefGoogle ScholarPubMed
Patmore, J, Meddaoui, B & Feldman, H (2019) Cultural considerations for treating Hispanic patients with eating disorders: a case study illustrating the effectiveness of CBT in reducing bulimia nervosa symptoms in a Latina patient. J Clin Psychol 75, 20062021.CrossRefGoogle Scholar
Storvoll, EE, Strandbu, A & Wichstrøm, L (2005) A cross-sectional study of changes in Norwegian adolescents’ body image from 1992 to 2002. Body Image 2, 518.CrossRefGoogle ScholarPubMed
Sahlan, RN, Taravatrooy, F, Quick, V, et al. (2020) Eating-disordered behavior among male and female college students in Iran. Eat Behav 37, 101378.10.1016/j.eatbeh.2020.101378CrossRefGoogle ScholarPubMed
Dalton, M, Blundell, J & Finlayson, G (2013) Effect of BMI and binge eating on food reward and energy intake: further evidence for a binge eating subtype of obesity. Obes Facts 6, 348–59.10.1159/000354599CrossRefGoogle ScholarPubMed
Dyall, SC (2015) Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 7, 52.10.3389/fnagi.2015.00052CrossRefGoogle ScholarPubMed
Müller, CP, Reichel, M, Mühle, C, et al. (2015) Brain membrane lipids in major depression and anxiety disorders. Biochim Biophys Acta 1851, 10521065.10.1016/j.bbalip.2014.12.014CrossRefGoogle ScholarPubMed
Kiecolt-Glaser, JK, Epel, ES, Belury, MA, et al. (2013) Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav Immun 28, 1624.10.1016/j.bbi.2012.09.004CrossRefGoogle ScholarPubMed
Simopoulos, AP (2011) Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol Neurobiol 44, 203215.10.1007/s12035-010-8162-0CrossRefGoogle ScholarPubMed
Popkin, BM & Gordon-Larsen, P (2004) The nutrition transition: worldwide obesity dynamics and their determinants. Int J Obes 28, S2S9.CrossRefGoogle ScholarPubMed
Drewnowski, A & Popkin, BM (1997) The nutrition transition: new trends in the global diet. Nutr Rev 55, 3143.10.1111/j.1753-4887.1997.tb01593.xCrossRefGoogle ScholarPubMed
Nasreddine, L, Hwalla, N, Sibai, A, et al. (2006) Food consumption patterns in an adult urban population in Beirut, Lebanon. Public Health Nutr 9, 194203.10.1079/PHN2005855CrossRefGoogle Scholar
Loef, M & Walach, H (2013) The omega-6/omega-3 ratio and dementia or cognitive decline: a systematic review on human studies and biological evidence. J Nutr Gerontol Geriatr 32, 123.CrossRefGoogle ScholarPubMed
Rees, D, Miles, EA, Banerjee, T, et al. (2006) Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: a comparison of young and older men. Am J Clin Nutr 83, 331342.10.1093/ajcn/83.2.331CrossRefGoogle Scholar
Sinclair, AJ (2019) Docosahexaenoic acid and the brain- what is its role? Asia Pac J Clin Nutr 28, 675688.Google ScholarPubMed
Simopoulos, AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases: Exp Biol Med 233, 674688.CrossRefGoogle ScholarPubMed
González, S, Huerta, JM, Fernández, S, et al. (2010) The relationship between dietary lipids and cognitive performance in an elderly population. Int J Food Sci Nutr 61, 217225.10.3109/09637480903348098CrossRefGoogle Scholar
Barberger-Gateau, P, Raffaitin, C, Letenneur, L, et al. (2007) Dietary patterns and risk of dementia: the three-city cohort study. Neurology 69, 19211930.CrossRefGoogle ScholarPubMed
Vercambre, M-N, Boutron-Ruault, M-C, Ritchie, K, et al. (2009) Long-term association of food and nutrient intakes with cognitive and functional decline: a 13-year follow-up study of elderly French women. Br J Nutr 102, 419427.10.1017/S0007114508201959CrossRefGoogle ScholarPubMed
Hooijmans, CR, Rutters, F, Dederen, PJ, et al. (2007) Changes in cerebral blood volume and amyloid pathology in aged Alzheimer APP/PS1 mice on a docosahexaenoic acid (DHA) diet or cholesterol enriched Typical Western Diet (TWD). Neurobiol Dis 28, 1629.10.1016/j.nbd.2007.06.007CrossRefGoogle Scholar
Oksman, M, Iivonen, H, Hogyes, E, et al. (2006) Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol containing diets on beta-amyloid accumulation in APP/PS1 transgenic mice. Neurobiol Dis 23, 563572.10.1016/j.nbd.2006.04.013CrossRefGoogle ScholarPubMed
Arsenault, D, Julien, C, Tremblay, C, et al. (2011) DHA improves cognition and prevents dysfunction of entorhinal cortex neurons in 3xTg-AD mice. PLOS ONE 6, e17397.CrossRefGoogle ScholarPubMed
Calon, F, Lim, GP, Yang, F, et al. (2004) Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 43, 633645.CrossRefGoogle Scholar
Scolnick, B (2018) Hypothesis: clues from mammalian hibernation for treating patients with anorexia nervosa. Psychology 9, 2159.Google ScholarPubMed
Ayton, AK (2004) Dietary polyunsaturated fatty acids and anorexia nervosa: is there a link? Nutr Neurosci 7, 112.CrossRefGoogle ScholarPubMed
Bardone-Cone, AM, Butler, RM, Balk, MR, et al. (2016) Dimensions of impulsivity in relation to eating disorder recovery. Int J Eat Disord 49, 10271031.10.1002/eat.22579CrossRefGoogle ScholarPubMed
Fischer, S, Anderson, KG & Smith, GT (2004) Coping with distress by eating or drinking: role of trait urgency and expectancies. Psychol Addict Behav 18, 269274.CrossRefGoogle ScholarPubMed
Cyders, MA (2011) Impulsivity and the sexes: measurement and structural invariance of the UPPS-P Impulsive Behavior Scale. Assessment 20, 8697.Google ScholarPubMed
Fischer, S, Smith, GT, Annus, A, et al. (2007) The relationship of neuroticism and urgency to negative consequences of alcohol use in women with bulimic symptoms. Personal Individ Differ 43, 11991209.10.1016/j.paid.2007.03.011CrossRefGoogle Scholar
Verdejo-García, A, Bechara, A, Recknor, EC, et al. (2007) Negative emotion-driven impulsivity predicts substance dependence problems. Drug Alcohol Depend 91, 213219.CrossRefGoogle ScholarPubMed
Cortese, S, Bernardina, BD & Mouren, M-C (2007) Attention-deficit/hyperactivity disorder (ADHD) and binge eating. Nutr Rev 65, 404411.10.1111/j.1753-4887.2007.tb00318.xCrossRefGoogle ScholarPubMed

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Binge eating among young adults: association with sociodemographic factors, nutritional intake, dietary n-6:n-3 ratio and impulsivity
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Binge eating among young adults: association with sociodemographic factors, nutritional intake, dietary n-6:n-3 ratio and impulsivity
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Binge eating among young adults: association with sociodemographic factors, nutritional intake, dietary n-6:n-3 ratio and impulsivity
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *