Skip to main content Accessibility help
×
Home

Physiological responses to maximal eating in men

Published online by Cambridge University Press:  06 April 2020


Aaron Hengist
Affiliation:
Department for Health, University of Bath, BathBA2 7AY, UK
Robert M. Edinburgh
Affiliation:
Department for Health, University of Bath, BathBA2 7AY, UK
Russell G. Davies
Affiliation:
Department for Health, University of Bath, BathBA2 7AY, UK
Jean-Philippe Walhin
Affiliation:
Department for Health, University of Bath, BathBA2 7AY, UK
Jariya Buniam
Affiliation:
Department for Health, University of Bath, BathBA2 7AY, UK Department of Physiology, Faculty of Science, Mahidol University, Bangkok10400, Thailand
Lewis J. James
Affiliation:
School of Sport, Exercise and Health Sciences, Loughborough University, LoughboroughLE11 3TU, UK
Peter J. Rogers
Affiliation:
School of Psychological Science, University of Bristol, BristolBS8 1TU, UK National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust, University of Bristol, BristolBS8 2BN, UK
Javier T. Gonzalez
Affiliation:
Department for Health, University of Bath, BathBA2 7AY, UK
James A. Betts
Affiliation:
Department for Health, University of Bath, BathBA2 7AY, UK
Corresponding
E-mail address:

Abstract

This study investigated metabolic, endocrine, appetite and mood responses to a maximal eating occasion in fourteen men (mean: age 28 (sd 5) years, body mass 77·2 (sd 6·6) kg and BMI 24·2 (sd 2·2) kg/m2) who completed two trials in a randomised crossover design. On each occasion, participants ate a homogenous mixed-macronutrient meal (pizza). On one occasion, they ate until ‘comfortably full’ (ad libitum) and on the other, until they ‘could not eat another bite’ (maximal). Mean energy intake was double in the maximal (13 024 (95 % CI 10 964, 15 084) kJ; 3113 (95 % CI 2620, 3605) kcal) compared with the ad libitum trial (6627 (95 % CI 5708, 7547) kJ; 1584 (95 % CI 1364, 1804) kcal). Serum insulin incremental AUC (iAUC) increased approximately 1·5-fold in the maximal compared with ad libitum trial (mean: ad libitum 43·8 (95 % CI 28·3, 59·3) nmol/l × 240 min and maximal 67·7 (95 % CI 47·0, 88·5) nmol/l × 240 min, P < 0·01), but glucose iAUC did not differ between trials (ad libitum 94·3 (95 % CI 30·3, 158·2) mmol/l × 240 min and maximal 126·5 (95 % CI 76·9, 176·0) mmol/l × 240 min, P = 0·19). TAG iAUC was approximately 1·5-fold greater in the maximal v. ad libitum trial (ad libitum 98·6 (95 % CI 69·9, 127·2) mmol/l × 240 min and maximal 146·4 (95 % CI 88·6, 204·1) mmol/l × 240 min, P < 0·01). Total glucagon-like peptide-1, glucose-dependent insulinotropic peptide and peptide tyrosine–tyrosine iAUC were greater in the maximal compared with ad libitum trial (P < 0·05). Total ghrelin concentrations decreased to a similar extent, but AUC was slightly lower in the maximal v. ad libitum trial (P = 0·02). There were marked differences on appetite and mood between trials, most notably maximal eating caused a prolonged increase in lethargy. Healthy men have the capacity to eat twice the energy content required to achieve comfortable fullness at a single meal. Postprandial glycaemia is well regulated following initial overeating, with elevated postprandial insulinaemia probably contributing.


Type
Full Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of the Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below.

References

Hill, AV, Long, CNH & Lupton, H (1924) Muscular exercise, lactic acid and the supply and utilisation of oxygenParts VII–VIII. Proc R Soc 97, 155176.Google Scholar
Stewart, WK & Fleming, LW (1973) Features of a successful therapeutic fast of 382 days’ duration. Postgrad Med J 49, 203209.CrossRefGoogle ScholarPubMed
Thurber, C, Dugas, LR, Ocobock, C, et al. (2019) Extreme events reveal an alimentary limit on sustained maximal human energy expenditure. Sci Adv 5, eaaw0341.CrossRefGoogle ScholarPubMed
Pasquet, P, Brigant, L, Froment, A, et al. (1992) Massive overfeeding and energy-balance in men – the Guru-Walla model. Am J Clin Nutr 56, 483490.CrossRefGoogle ScholarPubMed
Parry, SA, Woods, RM, Hodson, L, et al. (2017) A single day of excessive dietary fat intake reduces whole-body insulin sensitivity: the metabolic consequence of binge eating. Nutrients 9, 818.CrossRefGoogle ScholarPubMed
Parry, SA, Smith, JR, Corbett, TR, et al. (2017) Short-term, high-fat overfeeding impairs glycaemic control but does not alter gut hormone responses to a mixed meal tolerance test in healthy, normal-weight individuals. Br J Nutr 117, 4855.CrossRefGoogle Scholar
Parry, SA, Turner, MC, Woods, RM, et al. (2019) High-fat overfeeding impairs peripheral glucose metabolism and muscle microvascular eNOS Ser1177 phosphorylation. J Clin Endocrinol Metab 105, 6577.CrossRefGoogle Scholar
Walhin, JP, Richardson, JD, Betts, JA, et al. (2013) Exercise counteracts the effects of short-term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J Physiol 591, 62316243.CrossRefGoogle ScholarPubMed
Aarsland, A, Chinkes, D & Wolfe, RR (1996) Contributions of de novo synthesis of fatty acids to total VLDL-triglyceride secretion during prolonged hyperglycemia/hyperinsulinemia in normal man. J Clin Invest 98, 20082017.CrossRefGoogle ScholarPubMed
Knopp, JL, Holder-Pearson, L & Chase, JG (2019) Insulin units and conversion factors: a story of truth, boots, and faster half-truths. J Diabetes Sci Technol 13, 597600.CrossRefGoogle ScholarPubMed
Flint, A, Raben, A, Blundell, JE, et al. (2000) Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord 24, 3848.CrossRefGoogle ScholarPubMed
Hamer, M, Dye, L, Siobhan Mitchell, E, et al. (2016) Examining techniques for measuring the effects of nutrients on mental performance and mood state. Eur J Nutr 55, 19912000.CrossRefGoogle ScholarPubMed
Zierath, JR, He, L, Guma, A, et al. (1996) Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia 39, 11801189.CrossRefGoogle ScholarPubMed
Marin, P, Rebuffe-Scrive, M, Smith, U, et al. (1987) Glucose uptake in human adipose tissue. Metab Clin Exp 36, 11541160.CrossRefGoogle ScholarPubMed
Groop, LC, Bonadonna, RC, DelPrato, S, et al. (1989) Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest 84, 205213.CrossRefGoogle ScholarPubMed
Morrison, DJ, Kowalski, GM, Bruce, CR, et al. (2019) Modest changes to glycemic regulation are sufficient to maintain glucose fluxes in healthy young men following overfeeding with a habitual macronutrient composition. Am J Physiol Endocrinol Metab 316, E1061E1070.CrossRefGoogle ScholarPubMed
Hunt, JN & Stubbs, DF (1975) The volume and energy content of meals as determinants of gastric emptying. J Physiol 245, 209225.CrossRefGoogle ScholarPubMed
Wolever, TM & Bolognesi, C (1996) Source and amount of carbohydrate affect postprandial glucose and insulin in normal subjects. J Nutr 126, 27982806.Google ScholarPubMed
Cunningham, KM & Read, NW (1989) The effect of incorporating fat into different components of a meal on gastric emptying and postprandial blood glucose and insulin responses. Br J Nutr 61, 285290.CrossRefGoogle ScholarPubMed
Delgado-Aros, S, Kim, DY, Burton, DD, et al. (2002) Effect of GLP-1 on gastric volume, emptying, maximum volume ingested, and postprandial symptoms in humans. Am J Physiol Gastrointest Liver Physiol 282, G424G431.CrossRefGoogle ScholarPubMed
Dornonville de la Cour, C, Lindstrom, E, Norlen, P, et al. (2004) Ghrelin stimulates gastric emptying but is without effect on acid secretion and gastric endocrine cells. Regul Pept 120, 2332.CrossRefGoogle ScholarPubMed
Pironi, L, Stanghellini, V, Miglioli, M, et al. (1993) Fat-induced ileal brake in humans: a dose-dependent phenomenon correlated to the plasma levels of peptide YY. Gastroenterology 105, 733739.CrossRefGoogle ScholarPubMed
McQuaid, SE, Hodson, L, Neville, MJ, et al. (2011) Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition? Diabetes 60, 4755.CrossRefGoogle ScholarPubMed
Dubois, C, Beaumier, G, Juhel, C, et al. (1998) Effects of graded amounts (0–50 g) of dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. Am J Clin Nutr 67, 3138.CrossRefGoogle Scholar
Cohen, JC & Berger, GM (1990) Effects of glucose ingestion on postprandial lipemia and triglyceride clearance in humans. J Lipid Res 31, 597602.Google ScholarPubMed
Westphal, S, Leodolter, A, Kahl, S, et al. (2002) Addition of glucose to a fatty meal delays chylomicrons and suppresses VLDL in healthy subjects. Eur J Clin Invest 32, 322327.CrossRefGoogle ScholarPubMed
Westphal, S, Kastner, S, Taneva, E, et al. (2004) Postprandial lipid and carbohydrate responses after the ingestion of a casein-enriched mixed meal. Am J Clin Nutr 80, 284290.CrossRefGoogle ScholarPubMed
Lairon, D, Lopez-Miranda, J & Williams, C (2007) Methodology for studying postprandial lipid metabolism. Eur J Clin Nutr 61, 11451161.CrossRefGoogle ScholarPubMed
Malmstrom, R, Packard, CJ, Watson, TD, et al. (1997) Metabolic basis of hypotriglyceridemic effects of insulin in normal men. Arterioscler Thromb Vasc Biol 17, 14541464.CrossRefGoogle ScholarPubMed
Sadur, CN & Eckel, RH (1982) Insulin stimulation of adipose tissue lipoprotein lipase. Use of the euglycemic clamp technique. J Clin Invest 69, 11191125.CrossRefGoogle ScholarPubMed
Dupre, J, Ross, SA, Watson, D, et al. (1973) Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 37, 826828.CrossRefGoogle ScholarPubMed
Kreymann, B, Williams, G, Ghatei, MA, et al. (1987) Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2, 13001304.CrossRefGoogle ScholarPubMed
Date, Y, Kojima, M, Hosoda, H, et al. (2000) Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141, 42554261.CrossRefGoogle Scholar
Pais, R, Gribble, FM & Reimann, F (2016) Stimulation of incretin secreting cells. Ther Adv Endocrinol Metab 7, 2442.CrossRefGoogle ScholarPubMed
Lundberg, JM, Tatemoto, K, Terenius, L, et al. (1982) Localization of peptide YY (PYY) in gastrointestinal endocrine cells and effects on intestinal blood flow and motility. Proc Natl Acad Sci U S A 79, 44714475.CrossRefGoogle ScholarPubMed
le Roux, CW, Patterson, M, Vincent, RP, et al. (2005) Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal-weight but not obese subjects. J Clin Endocrinol Metab 90, 10681071.CrossRefGoogle Scholar
Marciani, L, Cox, EF, Pritchard, SE, et al. (2015) Additive effects of gastric volumes and macronutrient composition on the sensation of postprandial fullness in humans. Eur J Clin Nutr 69, 380384.CrossRefGoogle ScholarPubMed
Rolls, BJ, Castellanos, VH, Halford, JC, et al. (1998) Volume of food consumed affects satiety in men. Am J Clin Nutr 67, 11701177.CrossRefGoogle ScholarPubMed
Rogers, PJ (2018) Combating excessive eating: a role for four evidence-based remedies. Obesity (Silver Spring) 26, Suppl. 3, S18S24.CrossRefGoogle ScholarPubMed
Rogers, PJ & Brunstrom, JM (2016) Appetite and energy balancing. Physiol Behav 164, 465471.CrossRefGoogle ScholarPubMed
Eicke, BM, Seidel, E & Krummenauer, F (2003) Volume flow in the common carotid artery does not decrease postprandially. J Neuroimaging 13, 352355.CrossRefGoogle Scholar
Rehfeld, JF (1998) The new biology of gastrointestinal hormones. Physiol Rev 78, 10871108.CrossRefGoogle ScholarPubMed
Suzuki, K, Jayasena, CN & Bloom, SR (2011) The gut hormones in appetite regulation. J Obes 2011, 528401.CrossRefGoogle ScholarPubMed
Bazar, KA, Yun, AJ & Lee, PY (2004) Debunking a myth: neurohormonal and vagal modulation of sleep centers, not redistribution of blood flow, may account for postprandial somnolence. Med Hypotheses 63, 778782.CrossRefGoogle Scholar
Craig, A & Richardson, E (1989) Effects of experimental and habitual lunch-size on performance, arousal, hunger and mood. Int Arch Occup Environ Health 61, 313319.CrossRefGoogle Scholar
Smith, A, Ralph, A & McNeill, G (1991) Influences of meal size on post-lunch changes in performance efficiency, mood, and cardiovascular function. Appetite 16, 8591.CrossRefGoogle ScholarPubMed
Rolls, BJ, Rolls, ET, Rowe, EA, et al. (1981) Sensory specific satiety in man. Physiol Behav 27, 137142.CrossRefGoogle ScholarPubMed
Mattson, MP, Allison, DB, Fontana, L, et al. (2014) Meal frequency and timing in health and disease. Proc Natl Acad Sci U S A 111, 1664716653.CrossRefGoogle ScholarPubMed
Rogers, PJ & Hardman, CA (2015) Food reward. What it is and how to measure it. Appetite 90, 115.CrossRefGoogle Scholar
Chen, YC, Edinburgh, RM, Hengist, A, et al. (2018) Venous blood provides lower glucagon-like peptide-1 concentrations than arterialized blood in the postprandial but not the fasted state: consequences of sampling methods. Exp Physiol 103, 12001205.CrossRefGoogle Scholar
Edinburgh, RM, Hengist, A, Smith, HA, et al. (2017) Prior exercise alters the difference between arterialised and venous glycaemia: implications for blood sampling procedures. Br J Nutr 117, 14141421.CrossRefGoogle ScholarPubMed

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 1002
Total number of PDF views: 974 *
View data table for this chart

* Views captured on Cambridge Core between 06th April 2020 - 1st December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-2p8r4 Total loading time: 0.263 Render date: 2020-12-01T23:08:30.641Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Dec 01 2020 23:05:56 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Physiological responses to maximal eating in men
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Physiological responses to maximal eating in men
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Physiological responses to maximal eating in men
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *