Hostname: page-component-6f94db5f76-j68kw Total loading time: 0 Render date: 2023-10-19T14:44:39.057Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Sex differences in vitamin D metabolism, serum levels and action

Published online by Cambridge University Press:  19 January 2022

Alicja Wierzbicka*
Affiliation:
Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Krakow, 32-083, Poland
Maria Oczkowicz
Affiliation:
Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Krakow, 32-083, Poland
*
*Corresponding author: Dr A. Wierzbicka, email alicja.wierzbicka@iz.edu.pl

Abstract

The ubiquity of vitamin D metabolising enzymes and vitamin D receptors in mammalian organisms suggests that vitamin D has pleiotropic effects. There are quite a few studies indicating the anticancer, cardioprotective and antidiabetic effects of vitamin D; however, the best-documented actions of vitamin D are the regulation of Ca–phosphate balance and its effect on immune function.

Vitamin D levels in organisms are modulated by many environmental and non-environmental factors. One potential factor that may influence vitamin D levels and effects is the sex of the individuals studied. This review focuses on the scientific evidence indicating different synthesis and metabolism of vitamin D in females and males, mainly from PubMed database sources. The article verifies the sex differences in vitamin D levels reported around the world. Moreover, the different effects of vitamin D on the musculoskeletal, cardiovascular, nervous and immune systems, as well as cancer in males and females, were discussed.

Most studies addressing sex differences in vitamin D levels and effects are observational studies with conflicting results. Therefore, carefully designed clinical trials and experiments on animal models should be carried out to determine the role of non-environmental factors that may differentiate vitamin D levels in females and males.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pludowski, P, Holick, M, Grant, W, et al. (2018) Vitamin D supplementation guidelines. J Steroid Biochem Mol Biol 175, 125135.CrossRefGoogle ScholarPubMed
Bhattarai, HK, Shrestha, S, Rokka, K, et al. (2020) Vitamin D, calcium, parathyroid hormone, and sex steroids in bone health and effects of aging. J Osteoporos 17, 9324505.Google Scholar
Turer, CB, Lin, H & Flores, G (2013) Prevalence of vitamin D deficiency among overweight and obese US children. Pediatrics 131, 152161.CrossRefGoogle ScholarPubMed
Lips, P, Eekhoff, M, Schoor, N, et al. (2017) Vitamin D and type 2 diabetes. J Steroid Biochem Mol Biol 173, 280285.CrossRefGoogle ScholarPubMed
Ning, Z, Song, S, Miao, L, et al. (2016) High prevalence of vitamin D deficiency in urban health checkup population. Clin Nutr 35, 859863.CrossRefGoogle ScholarPubMed
Gromova, O, Doschanova, A, Lokshin, L, et al. (2020) Vitamin D deficiency in Kazakhstan: cross-sectional study. J Steroid Biochem Mol Biol 199, 105565.CrossRefGoogle ScholarPubMed
Kestenbaum, B, Katz, R, Boer, I, et al. (2011) Vitamin D, parathyroid hormone, and cardiovascular events among older adults. J Am Coll Cardiol 58, 14331441.CrossRefGoogle ScholarPubMed
Muhairi, SJ, Mehairi, AE, Khouri, AA, et al. (2013) Vitamin D deficiency among healthy adolescents in in Al Ain, United Arab Emirates. BMC Public Health 13, 33.CrossRefGoogle ScholarPubMed
Luttmann-Gibson, H, Mora, S, Camargo, CA, et al. (2019) Serum 25-hydroxyvitamin D in the VITamin D and n-3 TriaL (VITAL): clinical and demographic characteristics associated with baseline and change with randomized vitamin D treatment. Contemp Clin Trials 87, 105854.CrossRefGoogle Scholar
Wallace, CT, Reider, C & Fulgoni, LV (2013) Calcium and Vitamin D disparities are related to gender, age, race, household income level, and weight classification but not vegetarian status in the United States: analysis of the NHANES 2001–2008 data set. J Am Coll Nutr 32, 321330.CrossRefGoogle Scholar
Pasing, Y, Fenton, CF, Jorde, R, et al. (2017) Changes in the human transcriptome upon vitamin D supplementation. J Steroid Biochem Mol Biol 173, 9399.CrossRefGoogle ScholarPubMed
Pérez-López, FR (2007) Vitamin D: the secosteroid hormone and human reproduction. Gynecol Endocrinol 23, 1324.CrossRefGoogle ScholarPubMed
Gholami, F, Moradi, G, Zareei, B, et al. (2019) The association between circulating 25-hydroxyvitamin D and cardiovascular diseases: a meta-analysis of prospective cohort studies. BMC Cardiovasc Disord 19, 248.CrossRefGoogle ScholarPubMed
Bizzaro, G, Antico, A, Fortunato, A, et al. (2017) Vitamin D and autoimmune diseases: is ‘vitamin D receptor (VDR) polymorphism the culprit? IMAJ 19, 438443.Google ScholarPubMed
Sang-Min, J & Eun-Ae, S (2018) Exploring vitamin D metabolism and function in cancer. Exp Mol Med 50, 114.Google Scholar
Kerschan-Schind, K (2016) Prevention and rehabilitation of osteoporosis. Wien Med Wochenschr 166, 2227.CrossRefGoogle Scholar
Fond, G, Faugere, M, Faget-Agius, C, et al. (2019) Hypovitaminosis D is associated with negative symptoms, suicide risk, agoraphobia, impaired functional remission, and antidepressant consumption in schizophrenia. Eur Arch Psychiatry Clin Neurosci 269, 879886.CrossRefGoogle ScholarPubMed
Grossi de Oliveira, AL, Thereza Chaves, A, Alves Silva Menezesb, C, et al. (2017) Vitamin D receptor expression and hepcidin levels in the protection or severity of leprosy: a systematic review. Microbes Infect 19, 311322.CrossRefGoogle Scholar
Boland, R, Skliar, M, Curino, A, et al. (2003) Vitamin D compounds in plants. Plant Sci 164, 357369.CrossRefGoogle Scholar
Passeron, T, Bouillon, R, Callende, V, et al. (2019) Sunscreen photoprotection and vitamin D status. Br J Dermatol 181, 916931.CrossRefGoogle ScholarPubMed
Wang, Y, Zhu, J & DeLuca, H (2012) Where is the vitamin D receptor? Arch Biochem Biophys 523, 123133.CrossRefGoogle ScholarPubMed
Oczkowicz, M, Szymczyk, B, Świątkiewicz, M, et al. (2021) Analysis of the effect of vitamin D supplementation and sex on Vdr, Cyp2r1 and Cyp27b1 gene expression in Wistar rats’ tissues. J Steroid Biochem Mol Biol 212, 105918.CrossRefGoogle ScholarPubMed
Cipriani, C, Pepe, J, Piemonte, S, et al. (2014) Vitamin D and its relationship with obesity and muscle. Int J Endocrinol 2014, 841248.CrossRefGoogle ScholarPubMed
Holick, MF, Binkley, NC, Bischoff-Ferrari, HA, et al. (2011) Endocrine society. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96, 19111930.CrossRefGoogle ScholarPubMed
Dharambir, K, Sanghera, DK, Christopher, E, et al. (2017) Vitamin D status, gender differences, and cardiometabolic health disparities. Ann Nutr Metab 70, 7987.Google Scholar
Shoben, AB, Kestenbaum, B, Levin, G, et al. (2011) Seasonal variation in 25-hydroxyvitamin D concentrations in the cardiovascular health study. Am J Epidemiol 174, 13631372.CrossRefGoogle ScholarPubMed
Lagunova, Z, Porojnicu, AC, Lindberg, F, et al. (2009) The dependency of vitamin D status on body mass index, gender, age and season. Anticancer Res 29, 37133720.Google ScholarPubMed
Cummings, S, Cawthon, P, Ensrud, K, et al. (2006) BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women. J Bone Miner Res 21, 15501556.CrossRefGoogle Scholar
Duan, L, Xue, Z, Ji, H, et al. (2018) Effects of CYP2R1 gene variants on vitamin D levels and status: a systematic review and meta-analysis. Gene 15, 361369.CrossRefGoogle Scholar
Welsh, P, Doolin, O, McConnachie, A, et al. (2012) Circulating 25OHD, dietary vitamin D, PTH, and calcium associations with incident cardiovascular disease and mortality: the MIDSPAN family study. J Clin Endocrinol Metab 97, 45784587.CrossRefGoogle ScholarPubMed
Jonasson, TH, Rocha Lemos Costa, TM, Petterle, RR, et al. (2020) Body composition in nonobese individuals according to vitamin D level. PLoS One 15, 0241858.CrossRefGoogle ScholarPubMed
Turhan, T, Doğan, HO, Boğdaycioğlu, N, et al. (2018) Vitamin D status, serum lipid concentrations, and vitamin D receptor (VDR) gene polymorphisms in familial Mediterranean fever. Bosn J Basic Med Sci 18, 2128.Google ScholarPubMed
Hutchinson, MS, Grimnes, G, Joakimsen, RM, et al. (2010) Low serum 25-hydroxyvitamin D levels are associated with increased all-cause mortality risk in a general population: the Tromsø study. Eur J Endocrinol 162, 935942.CrossRefGoogle Scholar
Jun, S, Cowan, AE, Bhadra, A, et al. (2020) Older adults with obesity have higher risks of some micronutrient inadequacies and lower overall dietary quality compared to peers with a healthy weight, National Health and Nutrition Examination Surveys (NHANES), 2011–2014. Public Health Nutr 23, 22682279.CrossRefGoogle ScholarPubMed
Parka, S, Hamb, JO & Lee, BK (2014) A positive association of vitamin D deficiency and sarcopenia in 50 year old women, but not men. Clin Nutr 33, 900905.CrossRefGoogle Scholar
Quaiz, JM, Kazi, A, Fouda, M, et al. (2018) Age and gender differences in the prevalence and correlates of vitamin D deficiency. Arch Osteoporos 13, 49.Google Scholar
Guénard, F, Jacques, H, Gagnon, C, et al. (2019) Acute effects of single doses of bonito fish peptides and vitamin D on whole blood gene expression levels: a randomized controlled trial. Int J Mol Sci 20, 1944.CrossRefGoogle ScholarPubMed
Jarrah, MI, Mhaidat, NM, Alzoubi, KH, et al. (2018) The association between the serum level of vitamin D and ischemic heart disease: a study from Jordan. Vasc Health Risk Manag 14, 119127.CrossRefGoogle ScholarPubMed
Escaleira, MT, Sonohara, S & Brentani, MM (1993) Sex steroids induced up-regulation of 1,25-(OH)2 vitamin D3 receptors in T 47D breast cancer cells. J Steroid Biochem Mol Biol 45, 257263.CrossRefGoogle ScholarPubMed
Liel, Y, Shany, S, Smirnoff, P, et al. (1999) Estrogen increases 1,25-dihydroxyvitamin D receptors expression and bioresponse in the rat duodenal mucosa. Endocrinology 140, 280285.CrossRefGoogle ScholarPubMed
Schwartz, B, Smirnoff, P, Shany, S, et al. (2000) Estrogen controls expression and bioresponse of 1,25-dihydroxyvitamin D receptors in the rat colon. Mol Cell Biochem 203, 8793.CrossRefGoogle ScholarPubMed
Spanier, JA, Nasholda, FE, Mayne, CG, et al. (2015) Vitamin D and estrogen synergy in Vdr- expressing CD4+ T cells is essential to induce Helios+FoxP3+ T cells and prevent autoimmune demyelinating disease. J Neuroimmunol 286, 4858.CrossRefGoogle ScholarPubMed
Nashold, FE, Spach, KM, Spanier, JA, et al. (2009) Estrogen controls vitamin D3-mediated resistance to experimental autoimmune encephalomyelitis by controlling vitamin D3 metabolism and receptor expression. J Immunol 183, 36723681.CrossRefGoogle ScholarPubMed
Olmos-Ortiz, A, García-Quiroz, J, López-Marure, R, et al. (2016) Evidence of sexual dimorphism in placental vitamin D metabolism: testosterone inhibits calcitriol-dependent cathelicidin expression. J Steroid Biochem Mol Biol 163, 173182.CrossRefGoogle ScholarPubMed
Parikh, G, Varadinova, M, Suwandhi, P, et al. (2010) Vitamin D regulates steroidogenesis and insulin-like growth factor binding protein-1 (IGFBP-1) production in human ovarian cells. Horm Metab Res 42, 754757.CrossRefGoogle ScholarPubMed
Martins, D, Wolf, M, Pan, D, et al. (2007) Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin D in the United States: data from the third national health and nutrition examination survey. Arch Intern Med 167, 11591165.CrossRefGoogle ScholarPubMed
Carlberga, C & Haq, A (2018) The concept of the personal vitamin D response index. J Steroid Biochem Mol Biol 175, 1217.CrossRefGoogle Scholar
Lacroix de Oliveira, C, Cureau, FV, Cople-Rodrigues, CDS, et al. (2020) Prevalence and factors associated with hypovitaminosis D in adolescents from a sunny country: findings from the ERICA survey. J Steroid Biochem Mol Biol 199, 105609.CrossRefGoogle Scholar
Chia-Hung, C, Li-Kuo, L, Mei-Ju, C, et al. (2018) Associations between vitamin D deficiency, musculoskeletal health, and cardiometabolic risk among community-living people in Taiwan Age and sex-specific relationship. Medicine 97, 13886.Google Scholar
Zhu, XL, Chen, ZH, Li, Y, et al. (2020) Associations of vitamin D with novel and traditional anthropometric indices according to age and sex: a cross-sectional study in central southern China. Eat Weight Disord 25, 16511661.CrossRefGoogle ScholarPubMed
McCullough, ML, Weinstein, SJ, Freedman, DM, et al. (2010) Correlates of circulating 25-hydroxyvitamin D: cohort consortium vitamin D pooling project of rarer cancers. Am J Epidemiol 172, 2135.CrossRefGoogle ScholarPubMed
Barrea, L, Muscogiuri, G, Laudisio, D, et al. (2020) Influence of the Mediterranean diet on 25-hydroxyvitamin D levels in adults. Nutrients 12, 1439.CrossRefGoogle ScholarPubMed
Ben-Porat, T, Weiss, R, Sherf-Dagan, S, et al. (2020) Nutritional deficiencies in patients with severe obesity before bariatric surgery: what should be the focus during the preoperative assessment? J Acad Nutr Diet 120, 874884.CrossRefGoogle ScholarPubMed
Muscogiuri, G, Barrea, L, Di Somma, C, et al. (2019) Sex differences of vitamin D status across BMI classes: an observational prospective cohort study. Nutrients 11, 3034.CrossRefGoogle ScholarPubMed
Harmon, QE, Umbach, DM & Baird, DD (2016) Use of estrogen-containing contraception is associated with increased concentrations of 25-hydroxy vitamin D. J Clin Endocrinol Metab 101, 33703377.CrossRefGoogle ScholarPubMed
Zhao, D, Ouyang, P, de Boer, IH, et al. (2017) Serum vitamin D and sex hormones levels in men and women: the multi-ethnic study of atherosclerosis (MESA). Maturitas 96, 95102.CrossRefGoogle ScholarPubMed
Rebel, H, Dingemanse-van der Spek, C, Salvatori, D, et al. (2015) UV exposure inhibits intestinal tumor growth and progression to malignancy in intestine-specific Apc mutant mice kept on low vitamin D diet. Int J Cancer 136, 271277.CrossRefGoogle ScholarPubMed
Alharbi, AA, Alharbi, MA, Aljafen, AS, et al. (2018) Gender-specific differences in the awareness and intake of Vitamin D among adult population in Qassim region. J Family Community Med 25, 148154.Google ScholarPubMed
Geddawy, A, Al-Burayk, AK, Almhaine, AA, et al. (2020) Response regarding the importance of vitamin D and calcium among undergraduate health sciences students in Al Kharj, Saudi Arabia. Arch Osteoporos 15, 114.CrossRefGoogle ScholarPubMed
Donlon, CM, LeBoff, MS, Chou, SH, et al. (2018) Baseline characteristics of participants in the VITamin D and n-3 TriaL (VITAL): effects on bone structure and architecture. Contemp Clin Trials 67, 5667.CrossRefGoogle Scholar
Jenab, M, Salvini, S, Gils, CH, et al. (2009) Dietary intakes of retinol, β-carotene, vitamin D and vitamin E in the European prospective investigation into cancer and nutrition cohort. Eur J Clin Nutr 63, 150178.CrossRefGoogle ScholarPubMed
Yao, Y, Fu, S, Li, N, et al. (2019) Sex, residence and fish intake predict vitamin D status in Chinese centenarians. J Nutr Health Aging 23, 165171.CrossRefGoogle ScholarPubMed
Dawson-Hughes, B, Harris, S, Krall, E, et al. (1997) Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 337, 670676.CrossRefGoogle ScholarPubMed
Nakamura, T, Imai, Y, Matsumoto, T, et al. (2007) Estrogen prevents bone loss via estrogen receptor α and induction of Fas ligand in osteoclasts. Cell 130, 811823.CrossRefGoogle ScholarPubMed
Willing, M, Sowers, M, Aron, D, et al. (1998) Bone mineral density and its change in white women: estrogen and vitamin D receptor genotypes and their interaction. J Bone Miner Res 13, 695705.CrossRefGoogle ScholarPubMed
Ozturk, E, Gundogdu, I, Tonuk, B, et al. (2016) Bone mass and vitamin D levels in Parkinson’s disease: is there any difference between genders? J Phys Ther Sci 28, 22042209.CrossRefGoogle ScholarPubMed
Torsney, KM, Noyce, AJ, Doherty, KM, et al. (2014) Bone health in Parkinson’s disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 85, 11591166.CrossRefGoogle ScholarPubMed
Bischoff-Ferrari, HA, Can, U, Staehelin, HB, et al. (2008) Severe vitamin D deficiency in Swiss hip fracture patients. Bone 42, 597602.CrossRefGoogle ScholarPubMed
Luiz, MM, Máximo, R, Oliveira, DC, et al. (2020) Association of serum 25-hydroxyvitamin D deficiency with risk of incidence of disability in basic activities of daily living in adults >50 years of age. J Nutr 150, 29772984.CrossRefGoogle ScholarPubMed
Brickley, M, Mays, S & Ives, R (2010) Evaluation and interpretation of residual rickets deformities in adults. Int J Osteoarchaeol 20, 5466.Google Scholar
Veselka, B, Merwe, AE, Hoogland, MLP, et al. (2018) Gender-related vitamin D deficiency in a Dutch 19th century farming community. Int J Paleopathol 23, 6975.CrossRefGoogle Scholar
Abraham, BP, Prasad, P & Malaty, HM (2014) Vitamin D deficiency and corticosteroid use are risk factors for low bone mineral density in inflammatory bowel disease patients. Dig Dis Sci 59, 18781884.CrossRefGoogle ScholarPubMed
Dretakis, K & Igoumenou, VG (2019) The role of parathyroid hormone (PTH) and vitamin D in falls and hip fracture type. Aging Clin Exp Res 31, 15011507.CrossRefGoogle ScholarPubMed
Xiao, Q, Wu, M, Cui, J, et al. (2020) Plasma 25-hydroxyvitamin D level and the risk of frailty among Chinese community-based oldest-old: evidence from the CLHLS study. BMC Geriatr 20, 126.CrossRefGoogle ScholarPubMed
Villa, C, Taibi, A, Chen, J, et al. (2018) Colonic bacteroides are positively associated with trabecular bone structure and programmed by maternal vitamin D in male but not female offspring in an obesogenic environment. Int J Obes 42, 696703.CrossRefGoogle ScholarPubMed
Hyde, NK, Brennan-Olsen, SL, Mohebbi, M, et al. (2019) Maternal vitamin D in pregnancy and offspring bone measures in childhood: the Vitamin D in pregnancy study. Bone 124, 126131.CrossRefGoogle ScholarPubMed
Kuo, YH, Wang, TF, Liu, LK, et al. (2019) Epidemiology of sarcopenia and factors associated with it among community-dwelling older adults in Taiwan. Am J Med Sci 357, 124133.CrossRefGoogle ScholarPubMed
Mendes, J, Santos, A, Borges, N, et al. (2018) Vitamin D status and functional parameters: a cross-sectional study in an older population. PLoS One 13, 0201840.CrossRefGoogle Scholar
Gholami, F, Moradi, G, Zareei, B, et al. (2019) The association between circulating 25- hydroxyvitamin D and cardiovascular diseases: a meta-analysis of prospective cohort studies. BMC Cardiovasc Disord 19, 248.CrossRefGoogle ScholarPubMed
Kim, HA, Perrelli, A, Ragni, A, et al. (2020) Vitamin D deficiency and the risk of cerebrovascular disease. Antioxidants 9, 327.CrossRefGoogle ScholarPubMed
Anderson, JL, May, HT, Horne, BD, et al. (2010) Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population. Am J Cardiol 106, 963968.CrossRefGoogle Scholar
Przybylski, R, Mccune, S, Hollis, B, et al. (2010) Vitamin D deficiency in the spontaneously hypertensive heart failure (SHHF) prone rat. Nutr Metab Cardiovasc Dis 20, 641646.CrossRefGoogle ScholarPubMed
Pal, E, Hadjadj, L, Fontanyi, Z, et al. (2019) Gender, hyperandrogenism and vitamin D deficiency related functional and morphological alterations of rat cerebral arteries. PLoS One 14, 0216951.CrossRefGoogle ScholarPubMed
Farhangi, MA & Najafi, M (2018) Dietary total antioxidant capacity (TAC) among candidates for coronary artery bypass grafting (CABG) surgery: emphasis to possible beneficial role of TAC on serum vitamin D. PLoS One 13, 0208806.Google Scholar
Rohrmann, S, Braun, J, Bopp, M, et al. (2013) Inverse association between circulating vitamin D and mortality–dependent on sex and cause of death? Nutr Metab Cardiovasc Dis 23, 960966.CrossRefGoogle ScholarPubMed
Verdoia, M, Schaffer, A, Barbieri, L, et al. (2015) Impact of gender difference on vitamin D status and its relationship with the extent of coronary artery disease. Nutr Metab Cardiovasc Dis 25, 464470.CrossRefGoogle ScholarPubMed
Pittas, AG, Lau, J, Hu, FB, et al. (2007) The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 92, 20172029.CrossRefGoogle ScholarPubMed
Abudawood, M, Tabassum, H, Ansar, S, et al. (2018) Assessment of gender-related differences in vitamin D levels and cardiovascular risk factors in Saudi patients with type 2 diabetes mellitus. Saudi J Biol Sci 25, 3136.CrossRefGoogle ScholarPubMed
Al-Daghria, NM, Wania, K, Sabicoa, S, et al. (2018) Sex-specific expression of apolipoprotein levels following replenishment of vitamin D. J Steroid Biochem Mol Biol 180, 129136.CrossRefGoogle Scholar
Kim, MH, Lee, J, Ha, J, et al. (2018) Gender specific association of parathyroid hormone and vitamin D with metabolic syndrome in population with preserved renal function. Sci Rep 8, 1149.CrossRefGoogle ScholarPubMed
AlQuaiz, JM, Kazi, A, Youssef, RM, et al. (2020) Association between standardized vitamin 25(OH)D and dyslipidemia: a community-based study in Riyadh, Saudi Arabia. Environ Health Prev Med 25, 4.CrossRefGoogle ScholarPubMed
Zelber-Sagi, S, Zur, R, Thurm, T, et al. (2019) Low serum vitamin D is independently associated with unexplained elevated ALT only among non-obese men in the general population. Ann Hepatol 18, 578584.CrossRefGoogle ScholarPubMed
Al-Daghri, NM, Manousopoulou, A, Alokail, MS, et al. (2018) Sex-specific correlation of IGFBP-2 and IGFBP-3 with vitamin D status in adults with obesity: a cross-sectional serum proteomics study. Nutr Diabetes 8, 54.CrossRefGoogle ScholarPubMed
Gao, Z, Chen, Z, Sun, A, et al. (2019) Gender differences in cardiovascular disease. Med Novel Technol Devices 4, 100025.CrossRefGoogle Scholar
Kragt, J, Amerongen, B, Killestein, J, et al. (2009) Higher levels of 25-hydroxyvitamin D are associated with a lower incidence of multiple sclerosis only in women. Mult Scler 15, 915.CrossRefGoogle ScholarPubMed
Kurtzke, JF (1977) Geography in multiple sclerosis. J Neurol 215, 126.CrossRefGoogle ScholarPubMed
Krysko, KM, Graves, JS, Dobson, R, et al. (2020) Sex effects across the lifespan in women with multiple sclerosis. Ther Adv Neurol Disord 13, 1756286420936166.CrossRefGoogle ScholarPubMed
Adams, JS & Hewison, M (2010) Update in vitamin D. J Clin Endocrinol Metab 95, 471478.CrossRefGoogle ScholarPubMed
Woolmore, JA, Stone, M, Pye, EM, et al. (2007) Studies of associations between disability in multiple sclerosis, skin type, gender and ultraviolet radiation. Mult Scler 13, 369375.CrossRefGoogle ScholarPubMed
Correale, J, Ysrraelit, MC & Gaitán, MI (2010) Gender differences in 1,25 dihydroxyvitamin D3 immunomodulatory effects in multiple sclerosis patients and healthy subjects. J Immunol 185, 49484958.CrossRefGoogle ScholarPubMed
Vlot, MC, Boekel, L, Kragt, J, et al. (2019) Multiple sclerosis patients show lower bioavailable 25(OH)D and 1,25(OH)2D, but no difference in ratio of 25(OH)D/24,25(OH)2D and FGF23 concentrations. Nutrients 11, 2774.CrossRefGoogle ScholarPubMed
Spach, KM & Hayes, CE (2005) Vitamin D3 confers protection from autoimmune encephalomyelitis only in female mice. J Immunol 175, 41194126.CrossRefGoogle ScholarPubMed
Zhu, X, Beal, MF, Wang, X, et al. (2010) Why women have more Alzheimer’s disease than men: gender and mitochondrial toxicity of amyloid-β peptide. J Alzheimers Dis 20, 527533.Google Scholar
Ouma, S, Suenaga, M, Bölükbaşı Hatip, FF, et al. (2018) Serum vitamin D in patients with mild cognitive impairment and Alzheimer’s disease. Brain Behav 8, 00936.CrossRefGoogle ScholarPubMed
Gangwar, AK, Rawat, A, Tiwari, S, et al. (2015) Role of vitamin-D in the prevention and treatment of Alzheimer’s disease. Indian J Physiol Pharmacol 59, 9499.Google ScholarPubMed
Morello, M, Landel, V, Lacassagne, E, et al. (2018) Vitamin D improves neurogenesis and cognition in a mouse model of Alzheimer’s disease. Mol Neurobiol 55, 64636479.CrossRefGoogle Scholar
Alghamdi, S, Alsulami, N, Khoja, S, et al. (2020) Vitamin D supplementation ameliorates severity of major depressive disorder. J Mol Neurosci 70, 230235.CrossRefGoogle ScholarPubMed
Lowe, DW, Fraser, JL, Rollins, LG, et al. (2017) Vitamin D improves functional outcomes in neonatal hypoxic ischemic male rats treated with N-acetylcysteine and hypothermia. Neuropharmacology 123, 186200.CrossRefGoogle ScholarPubMed
Hawes, JE, Tesic, D, Whitehouse, AJ, et al. (2015) Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse. Behav Brain Res 286, 192200.CrossRefGoogle ScholarPubMed
Bivona, G, Gambino, CM, Iacolino, G, et al. (2019) Vitamin D and the nervous system. Neurol Res 41, 827835.CrossRefGoogle ScholarPubMed
Churilla, TM, Brereton, HD, Klem, M, et al. (2012) Vitamin D deficiency is widespread in cancer patients and correlates with advanced stage disease: a community oncology experience. Nutr Cancer 64, 521525.CrossRefGoogle ScholarPubMed
Cuomo, RE, Garland, CF, Gorham, ED, et al. (2015) Low cloud cover-adjusted ultraviolet B irradiance is associated with high incidence rates of leukemia: study of 172 countries. PLoS One 10, 0144308.CrossRefGoogle ScholarPubMed
Tas, F, Erturk, K & Soydinc, HO (2020) Serum 25-hydroxyvitamin D level is not associated with duration and activity of disease in melanoma patients. Nutr Cancer 73, 14.Google Scholar
Manson, JE, Cook, NR, Lee, IM, et al. (2019) Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med 380, 3344.CrossRefGoogle ScholarPubMed
Brozek, W, Manhardt, T, Kállay, E, et al. (2012) Relative expression of vitamin D hydroxylases, CYP27B1 and CYP24A1, and of Cyclooxygenase-2 and heterogeneity of human colorectal cancer in relation to age, gender, tumor location, and malignancy: results from factor and cluster analysis. Cancers 4, 763776.CrossRefGoogle ScholarPubMed
Slattery, ML, Sweeney, C, Murtaugh, M, et al. (2006) Associations between vitamin D, vitamin D receptor gene and the androgen receptor gene with colon and rectal cancer. Int J Cancer 118, 31403146.CrossRefGoogle ScholarPubMed
Alkhayal, KA, Awadalia, ZH, Vaali-Mohammed, MA, et al. (2016) Association of vitamin D receptor gene polymorphisms with colorectal cancer in a Saudi Arabian population. PLoS One 11, 0155236.CrossRefGoogle Scholar
Aigner, E, Stadlmayr, A, Huber-Schönauer, U, et al. (2014) Gender- and site-specific differences of colorectal neoplasia relate to vitamin D. Aliment Pharmacol Ther 40, 13411348.CrossRefGoogle ScholarPubMed
Hibler, EA, Molmenti, CLS, Lance, P, et al. (2014) Associations between circulating 1,25(OH)2D concentration and odds of metachronous colorectal adenoma. Cancer Causes Control 25, 809817.CrossRefGoogle ScholarPubMed
Zhou, Z, Xia, Y, Bandla, S, et al. (2014) Vitamin D receptor is highly expressed in precancerous lesions and esophageal adenocarcinoma with significant sex difference. Hum Pathol 45, 17441751.CrossRefGoogle ScholarPubMed
Pang, C, LaLonde, A, Godfrey, TE, et al. (2017) Bile salt receptor TGR5 is highly expressed in esophageal adenocarcinoma and precancerous lesions with significantly worse overall survival and gender differences. Clin Exp Gastroenterol 10, 2937.CrossRefGoogle ScholarPubMed
Chen, W, Dawsey, SM, Qiao, YL, et al. (2007) Prospective study of serum 25(OH)-vitamin D concentration and risk of oesophageal and gastric cancers. Br J Cancer 97, 123128.CrossRefGoogle ScholarPubMed
Mikhak, B, Gong, Z & Bracci, PM (2012) Intake of vitamins D and A, and calcium and risk of non-Hodgkin lymphoma: San Francisco Bay area population-based case-control study. Nutr Cancer 64, 674684.CrossRefGoogle Scholar
Kilkkinen, A, Knekt, P, Heliövaara, M, et al. (2008) Vitamin D status and the risk of lung cancer: a cohort study in Finland. Cancer Epidemiol Biomarkers Prev 17, 32743278.CrossRefGoogle ScholarPubMed
de La Puente-Yagüe, M, Cuadrado-Cenzual, MA, Ciudad-Cabañas, MJ, et al. (2018) Vitamin D: and its role in breast cancer. Kaohsiung J Med Sci 34, 423427.CrossRefGoogle ScholarPubMed
Song, D, Deng, Y, Liu, K, et al. (2019) Vitamin D intake, blood vitamin D levels, and the risk of breast cancer: a dose-response meta-analysis of observational studies. Aging 11, 1270812732.CrossRefGoogle ScholarPubMed
Estébanez, N, Gómez-Acebo, I, Palazuelos, C, et al. (2018) Vitamin D exposure and risk of breast cancer: a meta-analysis. Sci Rep 8, 9039.CrossRefGoogle ScholarPubMed
O’Brien, KM, Sandler, DP, Xu, Z, et al. (2018) Vitamin D, DNA methylation, and breast cancer. Breast Cancer Res 20, 70.CrossRefGoogle ScholarPubMed
Guo, H, Guo, J, Xie, W, et al. (2018) The role of vitamin D in ovarian cancer: epidemiology, molecular mechanism and prevention. J Ovarian Res 11, 71.CrossRefGoogle ScholarPubMed
Sajo, EA, Okunade, KS, Olorunfemi, G, et al. (2020) Serum vitamin D deficiency and risk of epithelial ovarian cancer in Lagos, Nigeria. Ecancermedicalscience 14, 1078.CrossRefGoogle ScholarPubMed
L’Espérance, K, Datta, GD, Qureshi, S, et al. (2020) Vitamin D exposure and ovarian cancer risk and prognosis. Int J Environ Res Public Health 17, 1168.CrossRefGoogle ScholarPubMed
Pejovic, T, Joshi, S, Campbell, S, et al. (2020) Association between vitamin D and ovarian cancer development in BRCA1 mutation carriers. Oncotarget 11, 41044114.CrossRefGoogle ScholarPubMed
Mondul, AM, Weinstein, SJ, Moy, KA, et al. (2016) Circulating 25-hydroxyvitamin D and prostate cancer survival. Cancer Epidemiol Biomarkers Prev 25, 665669.CrossRefGoogle ScholarPubMed
Deschasaux, M, Souberbielle, JC, Latino-Martel, P, et al. (2015) A prospective study of plasma 25-hydroxyvitamin D concentration and prostate cancer risk. Br J Nutr 115, 305314.CrossRefGoogle ScholarPubMed
Li, H, Stampfer, MJ, Hollis, JB, et al. (2007) A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer. PLoS Med 4, e103.CrossRefGoogle ScholarPubMed
Giangreco, AA, Dambal, S, Wagner, D, et al. (2015) Differential expression and regulation of vitamin D hydroxylases and inflammatory genes in prostate stroma and epithelium by 1,25-dihydroxyvitamin D in men with prostate cancer and an in vitro model. J Steroid Biochem Mol Biol 148, 156165.CrossRefGoogle ScholarPubMed
Vojdeman, FJ, Madsen, CM, Frederiksen, K, et al. (2019) Vitamin D levels and cancer incidence in 217,244 individuals from primary health care in Denmark. Int J Cancer 145, 338346.CrossRefGoogle ScholarPubMed
Dowling, GB, Gauvain, S & Macrae, DE (1948) Vitamin D in treatment of cutaneous tuberculosis. Br Med J 1, 430435.CrossRefGoogle ScholarPubMed
Gombart, AF (2009) The vitamin D–antimicrobial peptide pathway and its role in protection against infection. Future Microbiol 4, 11511165.CrossRefGoogle ScholarPubMed
Autier, P, Mullie, P, Macacu, A, et al. (2017) Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol 5, 9861004.CrossRefGoogle ScholarPubMed
Pagano, MT, Peruzzu, D, Ruggieri, A, et al. (2020) Vitamin D and sex differences in COVID-19. Front Endocrinol 11, 567824.CrossRefGoogle ScholarPubMed
Roy, P, Nadeau, M, Valle, M, et al. (2015) Vitamin D reduces LPS-induced cytokine release in omental adipose tissue of women but not men. Steroids 104, 6571.CrossRefGoogle Scholar
Kim, YS & Kim, N (2018) Sex-gender differences in irritable bowel syndrome. J Neurogastroenterol Motil 24, 544558.CrossRefGoogle ScholarPubMed
Ngo, ST, Steyn, FJ & McCombe, PA (2014) Gender differences in autoimmune disease. Front Neuroendocrinol 35, 347369.CrossRefGoogle ScholarPubMed
Dupuis, ML, Pagano, MT, Pierdominici, M, et al. (2021) The role of vitamin D in autoimmune diseases: could sex make the difference? Biol Sex Differ 12, 12.CrossRefGoogle ScholarPubMed
Grant, WB, Lahore, H, McDonnell, SL, et al. (2020) Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 12, 988.CrossRefGoogle ScholarPubMed
Pagano, MT, Peruzzu, D, Ruggieri, A, et al. (2020) Vitamin D and sex differences in COVID-19. Front Endocrinol 11, 567824.CrossRefGoogle ScholarPubMed
Vallejo, MS, Blümel, JE, Arteaga, E, et al. (2020) Gender differences in the prevalence of vitamin D deficiency in a southern Latin American country: a pilot study. Climacteric 23, 410416.CrossRefGoogle Scholar
Yao, Y, Fu, S, Li, N, et al. (2019) Sex, residence and fish intake predict vitamin d status in Chinese centenarians. J Nutr Health Aging 23, 165171.CrossRefGoogle ScholarPubMed
Iqbal, K, Islam, N, Mehboobali, N, et al. (2019) Relationship of sociodemographic factors with serum levels of vitamin D in a healthy population of Pakistan. Pak J Pharm Sci 32, 2933.Google Scholar
Jamwal, S, Gupta, K & Sidhu, TK (2018) Vitamin D levels: do we need to assess only in disease? Int J Appl Basic Med Res 8, 227230.CrossRefGoogle ScholarPubMed