Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T10:14:55.069Z Has data issue: false hasContentIssue false

Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, pH and rumen liquid volume

Published online by Cambridge University Press:  09 March 2007

Jan Dijkstra
Affiliation:
Wageningen Agricultural University, Department of Animal Nutrition, Haagsteeg 4, 6708 PM Wageningen, The Netherlands
Huug Boer
Affiliation:
Wageningen Agricultural University, Department of Animal Nutrition, Haagsteeg 4, 6708 PM Wageningen, The Netherlands
Jaap Van Bruchem
Affiliation:
Wageningen Agricultural University, Department of Human and Animal Physiology, Haarweg 10, 6709 PJ Wageningen, The Netherlands
Marianne Bruining
Affiliation:
Wageningen Agricultural University, Department of Animal Nutrition, Haagsteeg 4, 6708 PM Wageningen, The Netherlands
Seerp Tamminga
Affiliation:
Wageningen Agricultural University, Department of Animal Nutrition, Haagsteeg 4, 6708 PM Wageningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of rumen liquid volume, pH and concentration of volatile fatty acids (VFA) on the rates of absorption of acetic, propionic and butyric acids from the rumen was examined in lactating dairy cows. Experimental solutions introduced into the emptied, washed rumen comprised two different volumes (10 or 30 1), four levels of pH (4.5, 5.4, 6.3, 7.2) and three levels of individual VFA concentrations (20, 50 or 100 mM-acetic, propionic or butyric acid). All solutions contained a total of 170 mM-VFA and an osmotic value of 400 mOsmol/l. Absorption rates were calculated from the disappearance of VFA from the rumen corrected for passage with liquid phase to the omasum. An increase in initial fluid pH caused a reduction in fractional absorption rates of propionic and butyric acids. Increasing the initial pH from 4.5 to 7.2 reduced fractional absorption rates of acetic, propionic and butyric acids from 0.35, 0.67 and 0.85 to 0.21, 0.35 and 0.28/h respectively. The fractional absorption rates of all VFA were reduced (P < 0.05) by an increase in initial rumen volume. The fractional absorption rate of acetic acid was lower (P < 0.05) at an initial concentration of 20 mM than of 50 mM. The fractional absorption rate of propionic acid tended (P < 0.10) to decrease as the level of concentration increased while fractional absorption rate of butyric acid was not affected by butyric acid concentration. These results indicate that relative concentrations of VFA in rumen fluid might not represent relative production rates and that attempts to estimate individual VFA production from substrate digestion must take account of pH and VFA concentration.

Type
Rumenal Metabolism
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Aafjes, J. H. (1967). The disappearance of volatile fatty acids through the rumen wall. Zeitschrift, für Tierphlysiologie. Tierernährung und Furtermittelkunde 22, 6975.Google ScholarPubMed
Argenzio, R. A. (1988). Fluid and ion transport in the large intestine. In Aspects of Digestive Physiology in Ruminants, pp. 140155 [Dobson, A. and Dobson, M. J., editors]. Ithaca: Comstock Publishing Associates.Google Scholar
Ash, R. W. & Dobson, A. (1963). The effect of absorption on the acidity of rumen contents. Journal of Physiology 169, 3961.CrossRefGoogle ScholarPubMed
Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews 70, 567590.CrossRefGoogle ScholarPubMed
Black, J. L., Beever, D. E., Faichney, G. J., Howarth, B. R. & Graham, N. McC. (1981). Simulation of the effects of rumen function on the flow of nutrients from the stomach of sheep: part 1 – description of a computer program. Agriculturcil Systetm 6, 195219.CrossRefGoogle Scholar
Bugaut, M. (1987). Occurrence, absorption and metabolism of short chain Fatty acids in the digestive tract of mammals. Comparative Biochemistry and Physiology 86B, 439472.Google ScholarPubMed
Carter, R. R. & Grovum, W. L. (1990). A review of the physiological significance of hypertonic body fluids on feed intake and ruminal function: salivation, motility and microbes. Journal of Animal Science 68, 28112832.CrossRefGoogle ScholarPubMed
Danielli, J. F., Hitchcock, M. W. S., Marshall, R. A. & Phillipson, A. T. (1945). The mechanisms of absorption from the rumen as exemplified by the behaviour of acetic, propionic and butyric acids. Journal of Experimental Biology 22, 7584.CrossRefGoogle ScholarPubMed
Dobson, A. (1984). Blood flow and absorption from the rumen. Quarterly Journal of Experimental Physiology. 69, 599606.CrossRefGoogle ScholarPubMed
Edrise, B. M. & Smith, R. H. (1977). Absorption of volatile fatty acids in different compartments of the ruminant stomach. Proceedings of the Nutrition Society 36, 149A.Google ScholarPubMed
Gabel, G. (1990). Pansenazidose: Interaktionen zwischen den Veränderungen im Lumen und in der Wand des Pansens (Acidosis: Interrelations between changes in the lumen and the wall of the rumen). übersichten Tierernährung 18, 138.Google Scholar
Gäbel, G., Bestmann, M. & Martens, H. (1989). Bikarbonattransport im Pansen; EinfluB der Diät und von kurzkettigen Fettsäuren und Chlorid (Bicarbonate transport in the rumen; effects of diet and of short chain fatty acids and chloride). Journal of Animal Physiology and Animal Nutrition 62, 2021.Google Scholar
Gill, J. L. & Hafs, H. D. (1971). Analysis of repeated measurements of animals. Journal of Animcii Science 33, 331336.CrossRefGoogle ScholarPubMed
Hogan, J. P. (1961). The absorption of ammonia through the rumen of sheep. Australian Journal of Biological Science 14, 448460.CrossRefGoogle Scholar
Koong, L. J., Baldwin, R. L., Ulyatt, M. J. & Charlesworth, T. J. (1975). Iterative computation of metabolic flux and stoichiometric parameters for alternate pathways in rumen fermentation. Computer Prograrns in Biomedicine 4, 209213.CrossRefGoogle ScholarPubMed
McDougall, E. I. (1948). Studies on ruminant saliva. I. The composition and output of sheep's saliva. Biochemical Journal 43, 99106.CrossRefGoogle ScholarPubMed
MacLeod, N. A. & Ørskov, E. R. (1984). Absorption and utilization of volatile fatty acids in ruminants. Canadian Journal of Animal Science 64, Suppl., 354355.CrossRefGoogle Scholar
Masson, M. J. & Phillipson, A. T. (1951). The absorption of acetate, propionate and butyrate from the rumen of sheep. Journal of Physiology 113, 189206.CrossRefGoogle ScholarPubMed
Murphy, M. R., Baldwin, R. L. & Koong, L. J. (1982). Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. Journal of Animal Science 55, 411421.CrossRefGoogle ScholarPubMed
Oshio, S. & Tahata, I. (1984). Absorption of dissociated volatile fatty acids through the rumen wall of sheep. Canadian Journal of Animal Science 64, Suppl., 167168.CrossRefGoogle Scholar
Pfander, W. H. & Phillipson, A. T. (1953). The rates of absorption of acetic, propionic and n-butyric acids. Journal of Physiology 122, 102110.CrossRefGoogle ScholarPubMed
SAS Institute Inc. (1985). SAS User's Guide: Statistics, version 5 ed. Cary: SAS Institute Inc.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods, 6th ed. Ames: Iowa State University Press.Google Scholar
Stevens, C. E. (1970). Fatty acid transport through the rumen epithelium. In Physiology of Digestion and Metabolism in the Ruminant, pp. 101112 [Phillipson, A. T., Annison, E. F., Armstrong, D. G., Balch, C. C., Comline, R. S., Hardy, R. N., Hobson, P. N. and Keynes, R. D., editors]. Newcastle-upon-Tyne: Oriel Press.Google Scholar
Sutherland, T. M. (1963). The metabolism of short chain fatty acids in the ruminant. In Progress in Nutrition and Allied Sciences, pp. 159170 [Cuthbertson, D. P., editor]. Edinburgh: Oliver & Boyd.Google Scholar
Sutton, J. D. (1985). Digestion and absorption of energy substrates in the lactating cow. Journal of Dairy Science 68, 33763393.CrossRefGoogle Scholar
Tamminga, S. & Van Vuuren, A. M. (1988). Formation and utilization of end products of lignocellulose degradation in ruminants. Animal Feed Science and Technology 21, 141159.CrossRefGoogle Scholar
Thomas, P. C. & Martin, P. A. (1988). The influence of nutrient balance on milk yield and composition. In Nutrition and Lactation in the Dairy. Cow, pp. 97118 [Garnsworthy, P. C., editor]. London: Butterworths.CrossRefGoogle Scholar
Thorlacius, S. O. & Lodge, G. A. (1973). Absorption of steam-volatile fatty acids from the rumen of the cow as influenced by diet, buffers and pH. Canadian Journal of Animal Science 53, 279288.CrossRefGoogle Scholar
Thornley, J. H. M. & Johnson, I. R. (1990). Plant and Crop Modelling. Oxford: Clarendon Press.Google Scholar
Tsuda, T. (1956). Studies on the absorption from the rumen. II. Absorption of several organic substances from the miniature rumen of the goat. Tohoku Journal of Agricultural Research 7, 241256.Google Scholar
Uden, P., Colluci, P. E. & Van Soest, P. J. (1980). Investigation of chromium, cerium and cobalt as markers in digesta. Journal of the Science of Food and Agriculture 31, 625632.CrossRefGoogle ScholarPubMed
Von Engelhardt, W. & Hauffe, R. (1975). Role of the omasum in absorption and secretion of water and electrolytes in sheep and goats. In Digestion and Metabolism in die Ruminunt, pp. 216230 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale: University of New England Publishing Unit.Google Scholar
Warner, A. C. I. & Stacey, B. D. (1972). Water, sodium and potassium movements across the rumen wall of sheep. Quarterly Journal of Experimental Physiology 57, 103119.CrossRefGoogle ScholarPubMed
Weigand, E., Young, J. W. & McGilliard, A. D. (1972). Extent of butyrate metabolism by bovine ruminoreticulum epithelium and the relationship to absorption rate. Journal of Dairy Science 55, 589597.CrossRefGoogle ScholarPubMed