Skip to main content Accessibility help
×
Home

Antihypertensive effect of biotin in stroke-prone spontaneously hypertensive rats

  • Mari Watanabe-Kamiyama (a1), Shin Kamiyama (a1) (a2), Kimiko Horiuchi (a1), Kousaku Ohinata (a1) (a3), Hitoshi Shirakawa (a1), Yuji Furukawa (a1) and Michio Komai (a1)...

Abstract

Biotin is a member of the vitamin B-complex family. Biotin deficiency has been associated with hyperglycaemia and insulin resistance in animals and humans. In the present study, we investigated the pharmacological effects of biotin on hypertension in the stroke-prone spontaneously hypertensive rat (SHRSP) strain. We observed that long-term administration of biotin decreased systolic blood pressure in the SHRSP strain; also, a single dose of biotin immediately decreased systolic blood pressure in this strain. Pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazole [4,3-α]quinoxalin-1-one abolished the hypotensive action of biotin in the SHRSP strain, while pretreatment with the NO synthase inhibitor NG-nitro-l-arginine methyl ester had no effect on the action of biotin. Biotin reduced coronary arterial thickening and the incidence of stroke in the SHRSP strain. These results suggest that the pharmacological dose of biotin decreased the blood pressure of the SHRSP via an NO-independent direct activation of soluble guanylate cyclase. Our findings reveal the beneficial effects of biotin on hypertension and the incidence of stroke.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Antihypertensive effect of biotin in stroke-prone spontaneously hypertensive rats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Antihypertensive effect of biotin in stroke-prone spontaneously hypertensive rats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Antihypertensive effect of biotin in stroke-prone spontaneously hypertensive rats
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Michio Komai, fax +81 22 717 8813, email mkomai@biochem.tohoku.ac.jp

References

Hide All
1 Dakshinamurti, K, Modi, VV & Mistry, SP (1968) Some aspects of carbohydrates metabolism in biotin-deficient rats. Proc Soc Exp Biol Med 127, 396400.
2 Deodhar, AD & Mistry, SP (1970) Regulation of glycolysis in biotin-deficient rat liver. Life Sci II 9, 581588.
3 Reddi, A, DeAngelis, B, Frank, O, Lasker, N & Baker, H (1988) Biotin supplementation improves glucose and insulin tolerances in genetically diabetic KK mice. Life Sci 42, 13231330.
4 Zhang, H, Osada, K, Maebashi, M, Ito, M, Komai, M & Furukawa, Y (1996) A high biotin diet improves the impaired glucose tolerance of long-term spontaneously hyperglycemic rats with non-insulin-dependent diabetes mellitus. J Nutr Sci Vitaminol 42, 517526.
5 Sone, H, Ito, M, Sugiyama, K, Ohneda, M, Maebashi, M & Furukawa, Y (1999) Biotin enhances glucose-stimulated insulin secretion in the isolated perfused pancreas of the rat. J Nutr Biochem 10, 237243.
6 Romero-Navarro, G, Cabrera-Valladares, G, German, MS, Matschinsky, FM, Velazquez, A, Wang, J & Fernandez-Mejia, C (1999) Biotin regulation of pancreatic glucokinase and insulin in primary cultured rat islets and in biotin-deficient rats. Endocrinology 140, 45954600.
7 Sone, H, Ito, M, Shimizu, M, Sasaki, Y, Komai, M & Furukawa, Y (2000) Characteristics of the biotin enhancement of glucose-induced insulin release in pancreatic islets of the rat. Biosci Biotechnol Biochem 64, 550554.
8 Chauhan, J & Dakshinamurti, K (1991) Transcriptional regulation of the glucokinase gene by biotin in starved rats. J Biol Chem 266, 1003510038.
9 Dakshinamurti, K & Li, W (1994) Transcriptional regulation of liver phosphoenolpyruvate carboxykinase by biotin in diabetic rats. Mol Cell Biochem 132, 127132.
10 Solorzano-Vargas, RS, Pacheco-Alvarez, D & Leon-Del-Rio, A (2002) Holocarboxylase synthetase is an obligate participant in biotin-mediated regulation of its own expression and of biotin-dependent carboxylases mRNA levels in human cells. Proc Natl Acad Sci U S A 99, 53255330.
11 Rodriguez-Melendez, R, Cano, S, Mendez, ST & Velazquez, A (2001) Biotin regulates the genetic expression of holocarboxylase synthetase and mitochondrial carboxylases in rats. J Nutr 131, 19091913.
12 De La Vega, LA & Stockert, RJ (2000) Regulation of the insulin and asialoglycoprotein receptors via cGMP-dependent protein kinase. Am J Physiol Cell Physiol 279, C2037C2042.
13 Maebashi, M, Makino, Y, Furukawa, Y, Ohinata, K, Kimura, S & Sato, T (1993) Therapeutic evaluation of the effect of biotin on hyperglycemia in patients with non-insulin dependent diabetes mellitus. J Clin Biochem Nutr 14, 211218.
14 Coggeshall, JC, Heggers, JP, Robson, MC & Baker, H (1995) Biotin status and plasma glucose in diabetics. Ann N Y Acad Sci 447, 389392.
15 Baez-Saldana, A, Zendejas-Ruiz, I, Revilla-Monsalve, C, Islas-Andrade, S, Cardenas, A, Rojas-Ochoa, A, Vilches, A & Fernandez-Mejia, C (2004) Effects of biotin on pyruvate carboxylase, acetyl-CoA carboxylase, propionyl-CoA carboxylase, and markers for glucose and lipid homeostasis in type 2 diabetic patients and nondiabetic subjects. Am J Clin Nutr 79, 238243.
16 Yamori, Y, Ohtaka, M, Ueshima, H, Nara, Y, Horie, R, Shimamoto, T & Komachi, Y (1978) Glucose tolerance in spontaneously hypertensive rats. Jpn Circ J 42, 841847.
17 Collison, M, Glazier, AM, Graham, D, Morton, JJ, Dominiczak, MH, Aitman, TJ, Connell, JM, Gould, GW & Dominiczak, AF (2000) Cd36 and molecular mechanisms of insulin resistance in the stroke-prone spontaneously hypertensive rat. Diabetes 49, 22222226.
18 James, DJ, Cairns, F, Salt, IP, Murphy, GJ, Dominiczak, AF, Connell, JM & Gould, GW (2001) Skeletal muscle of stroke-prone spontaneously hypertensive rats exhibits reduced insulin-stimulated glucose transport and elevated levels of caveolin and flotillin. Diabetes 50, 21482156.
19 Kato, Y, Iwase, M, Kanazawa, H, Nishizawa, T, Zhao, YL, Takagi, K, Nagata, K, Noda, A, Koike, Y & Yokota, M (2003) Validity and application of noninvasive measurement of blood pressure in hamsters. Exp Anim 52, 359363.
20 Ardiansyah, Shirakawa, H, Koseki, T, Ohinata, K, Hashizume, K & Komai, M (2006) Rice bran fractions improve blood pressure, lipid profile, and glucose metabolism in stroke-prone spontaneously hypertensive rats. J Agric Food Chem 54, 19141920.
21 Tabuchi, M, Umegaki, K, Ito, T, Suzuki, M, Ikeda, M & Tomita, T (2001) Disturbance of circadian rhythm in heart rate, blood pressure and locomotive activity at the stroke-onset in malignant stroke-prone spontaneously hypertensive rats. Jpn J Pharmacol 85, 197202.
22 Food and Agriculture Organization & World Health Organization (1998) Carbohydrates in human nutrition (Report of Joint FAO/WHO Expert Consultation). In FAO Food and Nutrition Paper, pp. 1140. Rome, Italy: FAO.
23 Furukawa, Y, Kinoshita, A, Satoh, H, Kikuchi, H, Ohkoshi, S, Maebashi, M, Makino, Y, Sato, T, Ito, M & Kimura, S (1992) Bone disorder and reduction of ascorbic acid concentration induced by biotin deficiency in osteogenic disorder rats unable to synthesize ascorbic acid. J Clin Biochem Nutr 12, 171182.
24 Singh, IN & Dakshinamurti, K (1988) Stimulation of guanylate cyclase and RNA polymerase II activities in HeLa cells and fibroblasts by biotin. Mol Cell Biochem 79, 4755.
25 Vesely, DL (1982) Biotin enhances guanylate cyclase activity. Science 216, 13291330.
26 Spence, JT & Koudelka, AP (1984) Effects of biotin upon the intracellular level of cGMP and the activity of glucokinase in cultured rat hepatocytes. J Biol Chem 259, 63936396.
27 Malinski, T, Kapturczak, M, Dayharsh, J & Bohr, D (1993) Nitric oxide synthase activity in genetic hypertension. Biochem Biophys Res Commun 194, 654658.
28 Hirata, Y, Hayakawa, H, Kakoki, M, et al. (1996) Nitric oxide release from kidneys of hypertensive rats treated with imidapril. Hypertension 27, 672678.
29 Tesfamariam, B & Halpern, W (1988) Endothelium-dependent and endothelium-independent vasodilation in resistance arteries from hypertensive rats. Hypertension 11, 440444.
30 Mayhan, WG, Faraci, FM & Heistad, DD (1987) Impairment of endothelium-dependent responses of cerebral arterioles in chronic hypertension. Am J Physiol 253, H1435H1440.
31 Fuhr, JP Jr, He, H, Goldfarb, N & Nash, DB (2005) Use of chromium picolinate and biotin in the management of type 2 diabetes: an economic analysis. Dis Manag 8, 265275.
32 Mock, DM & Stadler, DD (1997) Conflicting indicators of biotin status from a cross-sectional study of normal pregnancy. J Am Coll Nutr 16, 252257.
33 Mock, DM, Stadler, DD, Stratton, SL & Mock, NI (1997) Biotin status assessed longitudinally in pregnant women. J Nutr 127, 710716.
34 Mock, DM, Quirk, JG & Mock, NI (2002) Marginal biotin deficiency during normal pregnancy. Am J Clin Nutr 75, 295299.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed