Skip to main content Accessibility help
×
×
Home

Associations between the dietary intake of antioxidant nutrients and the risk of hip fracture in elderly Chinese: a case–control study

  • Li-li Sun (a1), Bao-lin Li (a2), Hai-li Xie (a1), Fan Fan (a1), Wei-zhong Yu (a2), Bao-hua Wu (a1) (a2), Wen-qiong Xue (a1) and Yu-ming Chen (a1)...

Abstract

The role of oxidative stress in skeletal health is unclear. The present study investigated whether a high dietary intake of antioxidant nutrients (vitamins C and E, β-carotene, animal-derived vitamin A, retinol equivalents, Zn and Se) is associated with a reduced risk of hip fracture in elderly Chinese. This 1:1 matched case–control study involved 726 elderly Chinese with hip fracture and 726 control subjects, recruited between June 2009 and May 2013. Face-to-face interviews were conducted to determine habitual dietary intakes of the above-mentioned seven nutrients based on a seventy-nine-item FFQ and information on various covariates, and an antioxidant score was calculated. After adjustment for potential covariates, dose-dependent inverse associations were observed between the dietary intake of vitamin C, vitamin E, β-carotene, and Se and antioxidant score and the risk of hip fracture (P for trend ≤ 0·005). The OR of hip fracture for the highest (v. lowest) quartile of intake were 0·39 (95 % CI 0·28, 0·56) for vitamin C, 0·23 (95 % CI 0·16, 0·33) for vitamin E, 0·51 (95 % CI 0·36, 0·73) for β-carotene, 0·43 (95 % CI 0·26, 0·70) for Se and 0·24 (95 % CI 0·17, 0·36) for the antioxidant score. A moderate-to-high dietary intake of retinol equivalents in quartiles 2–4 (v. 1) was found to be associated with a lower risk of hip fracture (OR range: 0·51–0·63, P< 0·05). No significant association was observed between dietary Zn or animal-derived vitamin A intake and hip fracture risk (P for trend >0·20). In conclusion, a higher dietary intake of vitamins C and E, β-carotene, and Se and a moderate-to-high dietary intake of retinol equivalents are associated with a lower risk of hip fracture in elderly Chinese.

Copyright

Corresponding author

* Corresponding author: Dr Y.-m. Chen, fax +86 20 87330446, email chenyum@mail.sysu.edu.cn

References

Hide All
1 Johnell, O & Kanis, JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17, 17261733.
2 Johnell, O & Kanis, J (2005) Epidemiology of osteoporotic fractures. Osteoporos Int 16, S3S7.
3 Johnell, O & Kanis, JA (2004) An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos Int 15, 897902.
4 Cooper, C, Campion, G & Melton, LJ III (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2, 285289.
5 Hall, TJ, Schaeublin, M, Jeker, H, et al. (1995) The role of reactive oxygen intermediates in osteoclastic bone resorption. Biochem Biophys Res Commun 207, 280287.
6 Franzoso, G, Carlson, L, Xing, L, et al. (1997) Requirement for NF-kappa B in osteoclast and B-cell development. Genes Dev 11, 34823496.
7 Basu, S, Michaelsson, K, Olofsson, H, et al. (2001) Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 288, 275279.
8 Tucker, KL, Hannan, MT, Chen, H, et al. (1999) Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr 69, 727736.
9 Chen, YM, Ho, SC & Woo, JLF (2006) Greater fruit and vegetable intake is associated with increased bone mass among postmenopausal Chinese women. Br J Nutr 96, 745751.
10 Xie, HL, Wu, BH, Xue, WQ, et al. (2013) Greater intake of fruit and vegetables is associated with a lower risk of osteoporotic hip fractures in elderly Chinese: a 1:1 matched case–control study. Osteoporos Int 24, 28272836.
11 Zhang, JJ, Munger, RG, West, NA, et al. (2006) Antioxidant intake and risk of osteoporotic hip fracture in Utah: an effect modified by smoking status. Am J Epidemiol 163, 917.
12 Wolf, RL, Cauley, JA, Pettinger, M, et al. (2005) Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women's Health Initiative. Am J Clin Nutr 82, 581588.
13 Melhus, H, Michaelsson, K, Holmberg, L, et al. (1999) Smoking, antioxidant vitamins, and the risk of hip fracture. J Bone Miner Res 14, 129135.
14 Sahni, S, Hannan, MT, Gagnon, D, et al. (2008) High vitamin C intake is associated with lower 4-year bone loss in elderly men. J Nutr 138, 19311938.
15 Hall, SL & Greendale, GA (1998) The relation of dietary vitamin C intake to bone mineral density: results from the PEPI study. Calcif Tissue Int 63, 183189.
16 Melhus, H, Michaelsson, K, Kindmark, A, et al. (1998) Excessive dietary intake of vitamin A is associated with reduced bone mineral density and increased risk for hip fracture. Ann Intern Med 129, 770778.
17 Feskanich, D, Singh, V, Willett, WC, et al. (2002) Vitamin A intake and hip fractures among postmenopausal women. JAMA 287, 4754.
18 Promislow, JHE, Goodman-Gruen, D, Slymen, DJ, et al. (2002) Retinol intake and bone mineral density in the elderly: the Rancho Bernardo Study. J Bone Miner Res 17, 13491358.
19 Macdonald, HM, New, SA, Golden, MH, et al. (2004) Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr 79, 155165.
20 Michaelsson, K, Lithell, H, Vessby, B, et al. (2003) Serum retinol levels and the risk of fracture. N Engl J Med 348, 287294.
21 Maggio, D, Polidori, MC, Barabani, M, et al. (2006) Low levels of carotenoids and retinol in involutional osteoporosis. Bone 38, 244248.
22 Maggio, D, Barabani, M, Pierandrei, M, et al. (2003) Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 88, 15231527.
23 Simon, JA & Hudes, ES (2001) Relation of ascorbic acid to bone mineral density and self-reported fractures among US adults. Am J Epidemiol 154, 427433.
24 Fan, F, Xue, WQ, Wu, BH, et al. (2013) Higher fish intake is associated with a lower risk of hip fractures in Chinese men and women: a matched case–control study. PLOS ONE 8, e56849.
25 Yang, YX, Wang, GY & Pan, XC (2002) China Food Composition Table. Beijing: Peking University Medical Press.
26 Zhang, C-X & Ho, SC (2009) Validity and reproducibility of a food frequency questionnaire among Chinese women in Guangdong province. Asia Pac J Clin Nutr 18, 240250.
27 Wang, P, Chen, YM, He, LP, et al. (2012) Association of natural intake of dietary plant sterols with carotid intima–media thickness and blood lipids in Chinese adults: a cross-section study. PLOS ONE 7, e32736.
28 Willett, WC (1998) Implications of total energy intake for epidemiologic analysis. In Nutritional Epidemiology, 2nd ed., pp. 273–301 [WC Willett, editor]. New York, NY: Oxford University Press.
29 Yusuf, S, Hawken, S, Ounpuu, S, et al. (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 364, 937952.
30 Chuin, A, Labonte, M, Tessier, D, et al. (2009) Effect of antioxidants combined to resistance training on BMD in elderly women: a pilot study. Osteoporos Int 20, 12531258.
31 Leveille, SG, LaCroix, AZ, Koepsell, TD, et al. (1997) Dietary vitamin C and bone mineral density in postmenopausal women in Washington State, USA. J Epidemiol Community Health 51, 479485.
32 Nieves, JW, Grisso, JA & Kelsey, JL (1992) A case–control study of hip fracture: evaluation of selected dietary variables and teenage physical activity. Osteoporos Int 2, 122127.
33 Fairfield, KM & Fletcher, RH (2002) Vitamins for chronic disease prevention in adults: scientific review. JAMA 287, 31163126.
34 Garrett, IR, Boyce, BF, Oreffo, RO, et al. (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo . J Clin Invest 85, 632639.
35 Schwartz, ER (1979) Effect of vitamins C and E on sulfated proteoglycan metabolism and sulfatase and phosphatase activities in organ cultures of human cartilage. Calcif Tissue Int 28, 201208.
36 Kipp, DE, McElvain, M, Kimmel, DB, et al. (1996) Scurvy results in decreased collagen synthesis and bone density in the guinea pig animal model. Bone 18, 281288.
37 Sahni, S, Hannan, MT, Blumberg, J, et al. (2009) Inverse association of carotenoid intakes with 4-y change in bone mineral density in elderly men and women: the Framingham Osteoporosis Study. Am J Clin Nutr 89, 416424.
38 Sugiura, M, Nakamura, M, Ogawa, K, et al. (2008) Bone mineral density in post-menopausal female subjects is associated with serum antioxidant carotenoids. Osteoporos Int 19, 211219.
39 New, SA, Robins, SP, Campbell, MK, et al. (2000) Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr 71, 142151.
40 Sahni, S, Hannan, MT, Blumberg, J, et al. (2009) Protective effect of total carotenoid and lycopene intake on the risk of hip fracture: a 17-year follow-up from the Framingham Osteoporosis Study. J Bone Miner Res 24, 10861094.
41 Opotowsky, AR & Bilezikian, JP (2004) Serum vitamin A concentration and the risk of hip fracture among women 50 to 74 years old in the United States: a prospective analysis of the NHANES I follow-up study. Am J Med 117, 169174.
42 Barker, ME, McCloskey, E, Saha, S, et al. (2005) Serum retinoids and beta-carotene as predictors of hip and other fractures in elderly women. J Bone Miner Res 20, 913920.
43 Mellanby, E (1941) Skeletal changes affecting the nervous system produced in young dogs by diets deficient in vitamin A. J Physiol 99, 467486.
44 Frankel, TL, Seshadri, MS, McDowall, DB, et al. (1986) Hypervitaminosis A and calcium-regulating hormones in the rat. J Nutr 116, 578587.
45 Kneissel, M, Studer, A, Cortesi, R, et al. (2005) Retinoid-induced bone thinning is caused by subperiosteal osteoclast activity in adult rodents. Bone 36, 202214.
46 Tapiero, H, Townsend, DM & Tew, KD (2003) The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother 57, 134144.
47 Monsen, ER (2000) Dietary reference intakes for the antioxidant nutrients: vitamin C, vitamin E, selenium, and carotenoids. J Am Diet Assoc 100, 637640.
48 Foppa, I & Spiegelman, D (1997) Power and sample size calculations for case–control studies of gene–environment interactions with a polytomous exposure variable. Am J Epidemiol 146, 596604.
49 MacDonald, HM, New, SA & Reid, DM (2005) Longitudinal changes in dietary intake in Scottish women around the menopause: changes in dietary pattern result in minor changes in nutrient intake. Public Health Nutr 8, 409416.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Sun Supplementary Material
Tables S1-S2

 Word (39 KB)
39 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed