Skip to main content
×
×
Home

Bioavailability of minerals in legumes

  • Ann-Sofie Sandberg (a1)
Abstract

The mineral content of legumes is generally high, but the bioavailability is poor due to the presence of phytate, which is a main inhibitor of Fe and Zn absorption. Some legumes also contain considerable amounts of Fe-binding polyphenols inhibiting Fe absorption. Furthermore, soya protein per se has an inhibiting effect on Fe absorption. Efficient removal of phytate, and probably also polyphenols, can be obtained by enzymatic degradation during food processing, either by increasing the activity of the naturally occurring plant phytases and polyphenol degrading enzymes, or by addition of enzyme preparations. Biological food processing techniques that increase the activity of the native enzymes are soaking, germination, hydrothermal treatment and fermentation. Food processing can be optimized towards highest phytate degradation provided that the optimal conditions for phytase activity in the plant is known. In contrast to cereals, some legumes have highest phytate degradation at neutral or alkaline pH. Addition of microbial enzyme preparations seems to be the most efficient for complete degradation during processing. Fe and Zn absorption have been shown to be low from legume-based diets. It has also been demonstrated that nutritional Fe deficiency reaches its greatest prevalence in populations subsisting on cereal- and legume-based diets. However, in a balanced diet containing animal protein a high intake of legumes is not considered a risk in terms of mineral supply. Furthermore, once phytate, and in certain legumes polyphenols, is degraded, legumes would become good sources of Fe and Zn as the content of these minerals is high.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bioavailability of minerals in legumes
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Bioavailability of minerals in legumes
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Bioavailability of minerals in legumes
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr Ann-Sofie Sandberg, tel +46 31 33 55 630, fax +46 31 83 37 82, email ann-sofie.sandberg@fsc.chalmers.se
References
Hide All
Allen, LK (1982) Calcium bioavailability and absorption; a review. American Journal of Clinical Nutrition 35, 783808.
Bartolomé, B, Hernández, T & Estrella, I (1997) Effects of processing on individual condensed tannins from lentils. In COST 98 Effects of Antinutrients on the Nutritional Value of Legume Diets, vol. 4, pp. 3236 [Bardocz, S, Muzquiz, M and Pusztai, P, editors]. Luxembourg: European Communities.
Brune, M, Rossander, L & Hallberg, L (1989) Iron absorption and phenolic compounds. Importance of different phenolic structures. European Journal of Clinical Nutrition 43, 547558.
Brune, M, Rossander-hulthén, L, Hallberg, L, Gleerup, A & Sandberg, A-S (1992) Human iron absorption from bread: Inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. Journal of Nutrition 122, 442449.
Cook, JD, Morck, TA & Lynch, SR (1981) The inhibitory effect of soy products on nonheme iron absorption in man. American Journal of Clinical Nutrition 34, 26222629.
Davidsson, L, Dimitriou, T, Walczyk, T & Hurrell, RF (2001) Iron absorption from experimental infant formulas based on pea protein isolate The effect of phytic acid and ascorbic acid. British Journal of Nutrition 85, 5963.
Davidsson, L, Galan, P, Kastenmayer, P, Cherouvrier, F, Juillerat, M-A, Jercberg, S & Hurrell, RF (1994) Iron bioavailability studied in infants: The influence of phytic acid and ascorbic acid in infant formulas based on soy isolate. Pediatric Research 36, 816822.
Fachmann, W, Souci, SW & Kraut, H (2000) Food Composition and Nutrition Tables, p. 1182. Boca Raton: CRC Press.
Fredlund, K, Rossander-hulthén, L, Isaksson, M, Almgren, A & Sandberg, AS (2002) Absorption of zinc and calcium: dose-dependent inhibition by phytate. Journal of Applied Microbiology 93, 197204.
Fredrikson, M, Alminger, ML, Carlsson, NG & Sandberg, A-S (2001 a) Phytate content and phytate degradation by endogenous phytase in pea (Pisum sativum). Journal of the Science of Food and Agriculture 81, 11391144.
Fredrikson, M, Alminger, ML & Sandberg, AS (2002 a) Improved in vitro availability of iron and zinc from dephytinised pea protein formulas, comparison of iron availability with commercial soy protein formula. Submitted for publication.
Fredrikson, M, Andlid, T, Haikara, A & Sandberg, AS (2002 b) Phytate degradation by microorganisms in synthetic media and pea flour. Journal of Applied Microbiology 93, 197204.
Fredrikson, M, Biot, P, Alminger, ML, Carlsson, NG & Sandberg, AS (2001 b) Production process for high-quality pea-protein isolate, with low content of oligosaccharides and phytate. Journal of Agricultural and Food Chemistry 49, 12081212.
Greiner, R & Konietzny, U (1997) Phytate hydrolysis in black beans by endogeneous and exogeneous enzymes. In COST 98 Effects of Antinutrients on the Nutritional Value of Legume Diets, vol. 4, pp. 1927 [Bardocz, S, Muzquiz, M and Pusztai, A, editors]. Luxembourg: European Communities.
Gustafsson, E & Sandberg, A-S (1995) Phytate reduction in brown beans (Phaseolus vulgaris L). Journal of Food Science 60, 149152, 156.
Hallberg, L, Brune, M & Rossander, L (1989) Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. American Journal of Clinical Nutrition 49, 140144.
Hallberg, L & Rossander, L (1982) Effect of soy protein on non-hemeiron absorption in man. American Journal of Clinical Nutrition 36, 514520.
Heaney, RP & Weaver, CM (1989) Oxalate: effect on calcium absorbability. American Journal of Clinical Nutrition 50, 830832.
Heaney, RP & Weaver, CM (1990) Calcium absorption from kale. American Journal of Clinical Nutrition 51, 656657.
Heaney, RP & Weaver, CM & Recker, RR (1988) Calcium absorption from spinach. American Journal of Clinical Nutrition 47, 707709.
Helman, AD & Darnton-Hill, I (1987) Vitamin and iron status in new vegetarians. American Journal of Clinical Nutrition 45, 785789.
Honke, J, Sandberg, A-S & Kozlowska, H (1999) The influence of pH and temperature on endogenous phytase activity and on hydrolysis of inositol hexaphosphate in lentil, faba bean and pea seeds. Polish Journal of Food and Nutrition Sciences 8/49, 109122.
Hurrell, RF, Juillerat, M-A, Reddy, MB, Lynch, SR, Dassenko, SA & Cook, JD (1992) Soy protein, phytate, and iron absorption in humans. American Journal of Clinical Nutrition 56, 573578.
Hurrell, RF, Reddy, M & Cook, JD (1999) Inhibition of non-haemiron absorption in man by polyphenolic-containing beverages. British Journal of Nutrition 81, 289295.
International Nutritional Anemia Consultative Group (1982) Iron Absorption from Cereals and Legumes. A Report of the International Nutritional Anemia Consultative Group, New York, pp. 144. New York: The Nutrition Foundation.
Loewus, RA, Everard, JD & Young, KA (1990) 3. Inositol metabolism: Precursor role and breakdown. In Inositol Metabolism in Plants, pp. 2145 [Morre, DJ, Boss, WF and Loewus, FA, editors]. New York: Wiley-Liss.
Lönnerdal, B, Bell, JG, Hendricks, AG, Burns, RA & Keen, CL (1988) Effect of phytate removal on zinc absorption from soy formula. American Journal of Clinical Nutrition 48, 13011306.
Loönnerdal, B, Sandberg, A-S, Sandstroöm, B & Kunz, C (1989) Inhibitory effects of phytic acid and other inositol phosphateson zinc and calcium absorption in suckling rats. Journal of Nutrition 119, 211214.
Lynch, SR, Beard, JL, Dassenko, SA & Cook, JD (1984) Iron absorption from legumes in humans. American Journal of Clinical Nutrition 40, 4247.
Mcendree, LS, Kies, CV & Fox, HM (1983) Iron intake and iron nutritional status of lacto-ovo-vegetarian and omnivore students eating in a lacto-ovo-vegetarian food service. Nutrition Report International 27, 199206.
Matuschek, E, Towo, E & Svanberg, U (2001) Oxidation of polyphenols in high-tannin cereals and the effect on iron bioavailability. In Bioavailability 2001. Abstract book, [Abt, B, Amadò, Rand Davidsson, L editors]. Zürich: ETH Swiss Federal Institute of Technology.
Morck, TA, Lynch, SR, Skikne, BS & Cook, JD (1981)Iron availability from infant food supplements. American Journal of Clinical Nutrition 34, 26302634.
Paredes-lopez, O & Harry, GI (1989) Changes in selected chemical and antinutritional components during tempeh preparationusing fresh and hardened common beans. Journal of Food Science 54, 968970.
Reddy, NR, Pierson, MD, Sathe, SK & Salunkhe, DK (1989) Occurrence, distribution, content, and dietary intake of phytate. In Phytates in Cereals and Legumes, pp. 3956 [ Reddy, NR, Pierson, MD, Sathe, SK, and Salunkhe, DK editors]. Boca Raton, Florida: CRC Press.
Reddy, S& Sanders, TAB (1990) Haematological studies on premenopausal Indian and Caucasian vegetarians compared with Caucasian omnivores. British Journal of Nutrition 64, 331338.
Salunkhe, DK, Jadhav, SJ, Kadam, SS & Chavan, JK (1982) Chemical, biochemical, and biological significance of polyphenols in cereals and legumes. CRC Critical Reviews in Food Science and Nutrition 17, 277305.
Sandberg, AS (1996) Food processing influencing iron bioavailability. In Iron Nutrition in Health and Disease, pp. 349356 [Hallberg, H and Asp, N-G editors]. London: John Libbey.
Sandberg, AS (2000) Developing functional ingredients. A case study. In Functional Foods, pp. 209232 [Gibson, GR and Williams, CM editors]. Cambridge and Boca Raton, Florida: Woodhead Publishing and CRC Press.
Sandberg, AS (2002) In vitro and in vivo degradation of phytate. In Food Phytates, pp. 139155 [Reddy, NR and Sathe, SK editors]. Boca Raton, Florida: CRC Press.
Sandberg, AS, Brune, M, Carlsson, NG, Hallberg, L, Skoglund, E & Rossander-hulthén, L (1999) Inositol phosphates with different number of phosphate groups influence iron absorption in humans. American Journal of Clinical Nutrition 70, 240246.
Sandberg, AS & Svanberg, U (1991) Phytate hydrolysis by phytase in cereals. Effects on in vitro estimation of iron availability. Journal of Food Science 56, 13301333.
Sandström, B, Almgren, A, Kivistö, C & Cederblad, A (1989) Effect of protein level and protein source on zinc absorption in man. Journal of Nutrition 119, 4853.
Sandström, B & Cederblad, A (1980) Zinc absorption from composite meals. II. Influence of the main protein source. American Journal of Clinical Nutrition 33, 17781783.
Sandström, B,Cederblad, A & Lönnerdal, B (1983) Zinc absorption from human milk, cow's milk and infant formulas. American Journal of Diseases of Children 137, 726729.
Sandström, B & Sandberg, A-S (1992) Inhibitory effects of isolated inositol phosphates on zinc absorption in humans. Journal of Trace Elements and Electrolytes in Health and Disease 6, 99103.
Scott, JJ (1991) Alkaline phytase activity in nonionic detergent extracts of legume seeds. Plant Physiology 95, 12981301.
Siegenberg, D, Baynes, RD, Bothwell, TH, Macfarlane, BJ, Lamparelli, RD, Car, NG, Macphail, P, Schmidt, U, Tal, A & Mayet, F (1991) Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonhemeiron absorption. American Journal of Clinical Nutrition 53, 537541.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed