Skip to main content Accessibility help
×
×
Home

Butyrate protects Caco-2 cells from Campylobacter jejuni invasion and translocation

  • Kim Van Deun (a1), Frank Pasmans (a1), Filip Van Immerseel (a1), Richard Ducatelle (a1) and Freddy Haesebrouck (a1)...

Abstract

Invasion in and translocation across enterocytes are major events during Campylobacter jejuni-induced enteritis in humans. C. jejuni in vitro infection of cell monolayers typically results in loss of tight junction integrity, which could contribute to translocation. In the present study, we wanted to investigate whether butyrate is able to confer protection to Caco-2 cells against C. jejuni invasion, thus reducing paracellular permeability and limiting C. jejuni translocation. Protection of Caco-2 cells against C. jejuni invasion was assessed using a gentamicin protection assay. Transwell systems were used to investigate the impact of butyrate on translocation of C. jejuni across a Caco-2 monolayer and its effect on transepithelial resistance during infection. Butyrate protected Caco-2 cells against C. jejuni invasion in a concentration-dependent manner. Differentiated Caco-2 cells were less susceptible to C. jejuni invasion than 3-d-old undifferentiated cells and higher concentrations of butyrate and longer incubation times were needed to become refractive for invasion. C. jejuni translocation over Caco-2 monolayers was reduced when monolayers were treated with butyrate and this was accompanied by an enhanced drop in transepithelial resistance. The present study showed that butyrate is able to protect Caco-2 cells from two major virulence mechanisms of C. jejuni, namely invasion and translocation, but not from a decline in transepithelial resistance.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Butyrate protects Caco-2 cells from Campylobacter jejuni invasion and translocation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Butyrate protects Caco-2 cells from Campylobacter jejuni invasion and translocation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Butyrate protects Caco-2 cells from Campylobacter jejuni invasion and translocation
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Kim Van Deun, fax +32 9 264 74 94, email kim.vandeun@ugent.be

References

Hide All
1 Cummings, JH (1981) Short chain fatty acids in the human colon. Gut 22, 763779.
2 Tedelind, S, Westberg, F, Kjerrulf, M & Vidal, A (2007) Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol 13, 28262832.
3 Mariadason, JM, Barkla, DH & Gibson, PR (1997) Effect of short-chain fatty acids on paracellular permeability in Caco-2 intestinal epithelium model. Am J Physiol 272, 705712.
4 Venkatraman, A, Ramakrishna, BS & Pulimood, AB (1999) Butyrate hastens restoration of barrier function after thermal and detergent injury to rat distal colon in vitro. Scand J Gastroenterol 34, 10871092.
5 Kanauchi, O, Iwanaga, T, Mitsuyama, K, Saiki, T, Tsuruta, O, Noguchi, K & Toyonaga, A (1999) Butyrate from bacterial fermentation of germinated barley foodstuff preserves intestinal barrier function in experimental colitis in the rat model. J Gastroenterol Hepatol 14, 880888.
6 Russell, RG, O'Donnoghue, M, Blake, DC Jr, Zulty, J & DeTolla, LJ (1993) Early colonic damage and invasion of Campylobacter jejuni in experimentally challenged infant Macaca mulatta. J Infect Dis 168, 210215.
7 Youssef, M, Corthier, G, Goossens, H, Tancrede, C, Henry-Amar, M & Andremont, A (1987) Comparative translocation of enteropathogenic Campylobacter spp. and Escherichia coli from the intestinal tract of gnotobiotic mice. Infect Immun 55, 10191021.
8 MacCallum, A, Hardy, SP & Everest, PH (2005) Campylobacter jejuni inhibits the absorptive transport functions of Caco-2 cells and disrupts cellular tight junctions. Microbiology 151, 24512458.
9 Bras, AM & Ketley, JM (1999) Transcellular translocation of Campylobacter jejuni across human polarised epithelial monolayers. FEMS Microbiol Lett 179, 209215.
10 Monteville, MR & Konkel, ME (2002) Fibronectin-facilitated invasion of T84 eukaryotic cells by Campylobacter jejuni occurs preferentially at the basolateral cell surface. Infect Immun 70, 66656671.
11 Chen, ML, Ge, Z, Fox, JG & Schauer, DB (2006) Disruption of tight junctions and induction of proinflammatory cytokine responses in colonic epithelial cells by Campylobacter jejuni. Infect Immun 74, 65816589.
12 Hidalgo, IJ, Raub, TJ & Borchardt, RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96, 736749.
13 Siavoshian, S, Blottiere, HM, Le Foll, E, Kaeffer, B, Cherbut, C & Galmiche, JP (1997) Comparison of the effect of different short chain fatty acids on the growth and differentiation of human colonic carcinoma cell lines in vitro. Cell Biol Int 21, 281287.
14 Ruemmele, FM, Schwartz, S, Seidman, EG, Dionne, S, Levy, E & Lentze, MJ (2003) Butyrate induced Caco-2 cell apoptosis is mediated via the mitochondrial pathway. Gut 52, 94100.
15 Sugita-Konishi, Y, Ogawa, M, Arai, S, Kumagai, S, Igimi, S & Shimizu, M (2000) Blockade of Salmonella enteritidis passage across the basolateral barriers of human intestinal epithelial cells by specific antibody. Microbiol Immunol 44, 473479.
16 Schwartz, B, Lamprecht, SA, Polak-Charcon, S, Niv, Y & Kim, YS (1995) Induction of the differentiated phenotype in human colon cancer cell is associated with the attenuation of subcellular tyrosine phosphorylation. Oncol Res 7, 277287.
17 Biswas, D, Niwa, H & Itoh, K (2004) Infection with Campylobacter jejuni induces tyrosine-phosphorylated proteins into INT-407 cells. Microbiol Immunol 48, 221228.
18 Hu, L, McDaniel, JP & Kopecko, DJ (2006) Signal transduction events involved in human epithelial cell invasion by Campylobacter jejuni 81-176. Microb Pathog 40, 91100.
19 Wooldridge, KG, Williams, PH & Ketley, JM (1996) Host signal transduction and endocytosis of Campylobacter jejuni. Microb Pathog 21, 299305.
20 Mariadason, JM, Velcich, A, Wilson, AJ, Augenlicht, LH & Gibson, PR (2001) Resistance to butyrate-induced cell differentiation and apoptosis during spontaneous Caco-2 cell differentiation. Gastroenterology 120, 889899.
21 Lupton, JR & Kurtz, PP (1993) Relationship of colonic luminal short-chain fatty acids and pH to in vivo cell proliferation in rats. J Nutr 123, 15221530.
22 McIntyre, A, Young, GP, Taranto, T, Gibson, PR & Ward, PB (1991) Different fibres have different regional effects on luminal contents of rat colon. Gastroenterology 101, 12741281.
23 McIntyre, A, Gibson, PR & Young, GP (1993) Butyrate production from dietary fiber and protection against large bowel cancer in a rat model. Gut 34, 386391.
24 Hallert, C, Bjorck, I, Nyman, M, Pousette, A, Granno, C & Svensson, H (2003) Increasing fecal butyrate in ulcerative colitis patients by diet: controlled pilot study. Inflamm Bowel Dis 9, 116121.
25 Peterson, MC (1994) Clinical aspects of Campylobacter jejuni infections in adults. West J Med 161, 148152.
26 Fauchere, JL, Veron, M, Lellouch-Tubiana, A & Pfister, A (1985) Experimental infection of gnotobiotic mice with Campylobacter jejuni: colonisation of intestine and spread to lymphoid and reticulo-endothelial organs. J Med Microbiol 20, 215224.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed