Skip to main content Accessibility help
×
Home

Caucasian children's fat mass: routine anthropometry v. air-displacement plethysmography

  • Nathalie Michels (a1), Inge Huybrechts (a1), Karin Bammann (a2) (a3), Lauren Lissner (a4), Luis Moreno (a5), Maarten Peeters (a6) (a7), Isabelle Sioen (a1) (a7), Barbara Vanaelst (a1) (a7), Krishna Vyncke (a1) (a7) and Stefaan De Henauw (a1) (a8)...

Abstract

The present paper will use fat mass percentage (FM%) obtained via BOD POD® air-displacement plethysmography (FMADP%) to examine the relative validity of (1) anthropometric measurements/indices and (2) of FM% assessed with equations (FMeq%) based on skinfold thickness and bioelectrical impedance (BIA). In 480 Belgian children (aged 5–11 years) weight, height, skinfold thickness (triceps and subscapular), body circumferences (mid-upper arm, waist and hip), foot-to-foot BIA (Tanita®) and FMADP% were measured. Anthropometric measurements and calculated indices were compared with FMADP%. Next, published equations were used to calculate FMeq% using impedance (equations of Tanita®, Tyrrell, Shaefer and Deurenberg) or skinfold thickness (equations of Slaughter, Goran, Dezenberg and Deurenberg). Both indices and equations performed better in girls than in boys. For both sexes, the sum of skinfold thicknesses resulted in the highest correlation with FMADP%, followed by triceps skinfold, arm fat area and subscapular skinfold. In general, comparing FMeq% with FMADP% indicated mostly an age and sex effect, and an increasing underestimation but less dispersion with increasing FM%. The Tanita® impedance equation and the Deurenberg skinfold equation performed the best, although none of the used equations were interchangeable with FMADP%. In conclusion, the sum of triceps and subscapular skinfold thickness is recommended as marker of FM% in the absence of specialised technologies. Nevertheless, the higher workload, cost and survey management of an immobile device like the BOD POD® remains justified.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Caucasian children's fat mass: routine anthropometry v. air-displacement plethysmography
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Caucasian children's fat mass: routine anthropometry v. air-displacement plethysmography
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Caucasian children's fat mass: routine anthropometry v. air-displacement plethysmography
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: N. Michels, fax +32 9 332 49 94, email nathalie.michels@ugent.be

References

Hide All
1Fields, DA, Goran, MI & McCrory, MA (2002) Body-composition assessment via air-displacement plethysmography in adults and children: a review. Am J Clin Nutr 75, 453467.
2Fields, DA & Goran, MI (2000) Body composition techniques and the four-compartment model in children. J Appl Physiol 89, 613620.
3Lohman, TG (1989) Assessment of body composition in children. Pediatr Exerc Sci 1, 1930.
4Wells, JC, Williams, JE, Chomtho, S, et al. (2010) Pediatric reference data for lean tissue properties: density and hydration from age 5 to 20 y. Am J Clin Nutr 91, 610618.
5Stomfai, S, Ahrens, W, Bammann, K, et al. (2011) Intra- and inter-observer reliability in anthropometric measurements in children. Int J Obes 35, Suppl. 1, S45S51.
6Wells, JC & Fewtrell, MS (2006) Measuring body composition. Arch Dis Child 91, 612617.
7Sweeting, HN (2007) Measurement and definitions of obesity in childhood and adolescence: a field guide for the uninitiated. Nutr J 6, 32.
8Ahrens, W, Bammann, K, Siani, A, et al. (2011) The IDEFICS cohort: design, characteristics and participation in the baseline survey. Int J Obes 35, Suppl. 1, S3S15.
9Cole, TJ, Freeman, JV & Preece, MA (1998) British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Stat Med 17, 407429.
10Cole, TJ, Bellizzi, MC, Flegal, KM, et al. (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320, 12401243.
11Marfell-Jones, M, Olds, T, Stewart, A, et al. (2006) Standards for Anthropometric Assessment. Potchefstroom: International Society for the Advancement of Kinanthropometry.
12Susan, J, McCarthy, D, Fry, M, et al. (2004) New body fat reference curves for children. In North American Association for the Study of Obesity Annual Meeting, Las Vegas, Nevada.
13Schaefer, F, Georgi, M, Zieger, A, et al. (1994) Usefulness of bioelectric impedance and skinfold measurements in predicting fat-free mass derived from total body potassium in children. Pediatr Res 35, 617624.
14Deurenberg, P, Pieters, JJ & Hautvast, JG (1990) The assessment of the body fat percentage by skinfold thickness measurements in childhood and young adolescence. Br J Nutr 63, 293303.
15Deurenberg, P, van der Kooy, K, Leenen, R, et al. (1991) Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: a cross-validation study. Int J Obes 15, 1725.
16Tyrrell, VJ, Richards, G, Hofman, P, et al. (2001) Foot-to-foot bioelectrical impedance analysis: a valuable tool for the measurement of body composition in children. Int J Obes Relat Metab Disord 25, 273278.
17Slaughter, MH, Lohman, TG, Boileau, RA, et al. (1988) Skinfold equations for estimation of body fatness in children and youth. Hum Biol 60, 709723.
18Goran, MI, Driscoll, P, Johnson, R, et al. (1996) Cross-calibration of body-composition techniques against dual-energy X-ray absorptiometry in young children. Am J Clin Nutr 63, 299305.
19Deurenberg, P, Kusters, CS & Smit, HE (1990) Assessment of body composition by bioelectrical impedance in children and young adults is strongly age-dependent. Eur J Clin Nutr 44, 261268.
20Dezenberg, CV, Nagy, TR, Gower, BA, et al. (1999) Predicting body composition from anthropometry in pre-adolescent children. Int J Obes Relat Metab Disord 23, 253259.
21McCrory, MA, Gomez, TD, Bernauer, EM, et al. (1995) Evaluation of a new air displacement plethysmograph for measuring human body composition. Med Sci Sports Exerc 27, 16861691.
22Fields, DA, Hull, HR, Cheline, AJ, et al. (2004) Child-specific thoracic gas volume prediction equations for air-displacement plethysmography. Obes Res 12, 17971804.
23Fleiss, JL (1986) The Design and Analysis of Clinical Experiments. New York, NY: Wiley.
24Freedman, DS, Wang, J, Ogden, CL, et al. (2007) The prediction of body fatness by BMI and skinfold thicknesses among children and adolescents. Ann Hum Biol 34, 183194.
25Candido, AP, Freitas, SN & Machado-Coelho, GL (2011) Anthropometric measurements and obesity diagnosis in schoolchildren. Acta Paediatr 100, e120e124.
26Chomtho, S, Fewtrell, MS, Jaffe, A, et al. (2006) Evaluation of arm anthropometry for assessing pediatric body composition: evidence from healthy and sick children. Pediatr Res 59, 860865.
27Corvalan, C, Uauy, R, Kain, J, et al. (2010) Obesity indicators and cardiometabolic status in 4-y-old children. Am J Clin Nutr 91, 166174.
28Taylor, RW, Jones, IE, Williams, SM, et al. (2000) Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3–19 y. Am J Clin Nutr 72, 490495.
29Azcona, C, Koek, N & Fruhbeck, G (2006) Fat mass by air-displacement plethysmography and impedance in obese/non-obese children and adolescents. Int J Pediatr Obes 1, 176182.
30Radley, D, Cooke, CB, Fuller, NJ, et al. (2009) Validity of foot-to-foot bio-electrical impedance analysis body composition estimates in overweight and obese children. Int J Body Compos Res 7, 1520.
31Janz, KF, Nielsen, DH, Cassady, SL, et al. (1993) Cross-validation of the Slaughter skinfold equations for children and adolescents. Med Sci Sports Exerc 25, 10701076.
32Paineau, D, Chiheb, S, Banu, I, et al. (2008) Comparison of field methods to estimate fat mass in children. Ann Hum Biol 35, 185197.
33Reilly, JJ, Wilson, J & Durnin, JV (1995) Determination of body composition from skinfold thickness: a validation study. Arch Dis Child 73, 305310.
34Wells, JC (1999) Predicting fatness in US vs UK children. Int J Obes Relat Metab Disord 23, 1103.
35Bray, GA, DeLany, JP, Harsha, DW, et al. (2001) Evaluation of body fat in fatter and leaner 10-y-old African American and white children: the Baton Rouge Children's Study. Am J Clin Nutr 73, 687702.
36Jaffrin, MY (2009) Body composition determination by bioimpedance: an update. Curr Opin Clin Nutr Metab Care 12, 482486.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed