Skip to main content Accessibility help
×
Home

Diet and cancer: assessing the risk

  • C. I. R. Gill (a1) and I. R. Rowland (a1)

Abstract

Globally, colorectal cancer (CRC) is a leading cause of mortality from malignant disease. Case–control and cohort studies provide strong support for a role of diet in the aetiology of CRC. However to establish causal relationships and to identify more precisely the dietary components involved, intervention studies in human subjects are required. Cancer is an impractical endpoint in terms of numbers, cost, study duration and ethical considerations. Consequently, intermediate biomarkers of the disease are required. This review aims to provide an overview of the intermediate endpoints available for the study of CRC, particularly non-invasive faecal biomarkers. Examples of their use in dietary intervention studies are given.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Diet and cancer: assessing the risk
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Diet and cancer: assessing the risk
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Diet and cancer: assessing the risk
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr C. I. R. Gill, fax +44 (0) 2870 324965, C.Gill@ulst.ac.uk

References

Hide All
Agus, C, Ilett, KF, Kadlubar, FF & Minchin, RF (2000) Characterization of an ATP-dependent pathway of activation for the heterocyclic amine carcinogen N-hydroxy-2-amino-3-methylimidazo[4, 5-f] quinoline. Carcinogenesis 21, 12131219.
Alberts, DS, Einspahr, J, Ritenbaugh, C, Aickin, M, Rees, , McGee, S, Atwood, J, Emerson, S, Mason-Liddil, N, Bettinger, L, Patel, J & Bellapravalu, S, Ramanujam, PS, Phelps, J & Clark, L (1997) The effect of wheat bran fiber and calcium supplementation on rectal mucosal proliferation rates in patients with resected adenomatous colorectal polyps. Cancer Epidemiology, Biomarkers and Prevention 6, 161169.
Alexandrov, K, Rojas, M, Kadlubar, FF, Lang, NP & Bartsch, H (1996) Evidence of anti-benzo[a]pyrene diolepoxide-DNA adduct formation in human colon mucosa. Carcinogenesis 17, 20812083.
Alldrick, AJ & Lutz, WK (1989) Covalent binding of [2–14C]2-amino-3,8-dimethylimidazo[4,5-f]-quinoxaline (MeIQx) to mouse DNA in vivo. Carcinogenesis 10, 14191423.
Alles, MS, Hartemink, R, Meyboom, S, Harryvan, JL, Van-Laere, KM, Nagengast, FM & Hautvast, JG (1999) Effect of transgalactooligosaccharides on the composition of the human intestinal microflora and on putative risk markers for colon cancer. American Journal of Clinical Nutrition 69, 980991.
American Gastroenterologcal Association (2000) AGA Technical review: Impact of dietary fiber on colon cancer occurence. Gastroenterology 118, 12351257.
Anderson, JW, Zettwoch, N, Feldman, T, Tietyen-Clark, J, Oeltgen, P & Bishop, CW (1988) Cholesterol-lowering effects of psyllium hydrophilic mucilloid for hypercholesterolemic men. Archives of Internal Medicine 148, 292296.
Appelt, LC & Reicks, MM (1997) Soy feeding induces phase II enzymes in rat tissues. Nutrition and Cancer 28, 270275.
Badawi, AF, Stern, SJ, Lang, NP & Kadlubar, FF (1996) Cytochrome P-450 and acetyltransferase expression as biomarkers of carcinogen-DNA adduct levels and human cancer susceptibility. Progress in Clinical and Biological Research 395, 109140.
Baptista, J, Bruce, WR, Gupta, I, Krepinski, JJ, Van Tassell, RL & Wilkins, TD (1985) On the distribution of fecapentaenes, the fecal mutagens, in the human population. Cancer Letters 22, 299.
Baron, JA, Beach, M, Mandel, JS, van-Stolk, RU, Haile, RW, Sandler, RS, Rothstein, R, Summers, RW, Snover, DC, Beck, GJ, Bond, JH & Greenberg, ER (1999) Calcium supplements for the prevention of colorectal adenomas. Calcium Polyp Prevention Study Group. New England Journal of Medicine 340, 101107.
Bear, WL & Teel, RW (2000) Effects of citrus flavonoids on the mutagenicity of heterocyclic amines and on cytochrome P450 1A2 activity. Anticancer Research 20, 36093614.
Bingham, SA (2000) Diet and colorectal cancer prevention. Biochemical Society Transactions 28, 1216.
Blobe, GC, Obeid, LM & Hannun, YA (1994) Regulation of protein kinase C and role in cancer biology. Cancer and Metastasis Reviews 13, 411431.
Boland, CR (1996) Roles of the DNA mismatch repair genes in colorectal tumorigenesis. International Journal of Cancer 69, 4749.
Boland, CR, Thibodaeu, SN, Hamilton, SR, Sidransky, D, Eshleman, JR, Burt, RW, Meltzer, SJ, Rodriguez-Bigas, MA, Fodde, R, Ranzani, GN & Srivastavas, (1998) A National Institute workshop in microsatellite instability for cancer detection and famlial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Research 58, 52485257.
Bostick, RM, Fosdick, L, Grandits, GA, Lillemoe, TJ, Wood, JR, Grambsch, P, Louis, TA & Potter, JD (1997) Colorectal epithelial cell proliferative kinetics and risk factors for colon cancer in sporadic adenoma patients. Cancer Epidemiology, Biomarkers and Prevention 6, 10111019.
Bostick, RM, Fosdick, L, Wood, JR, Grambsch, P, Grandits, GA, Lillemoe, TJ, Louis, TA & Potter, JD (1995) Calcium and colorectal epithelial cell proliferation in sporadic adenoma patients: a randomized, double-blinded, placebo-controlled clinical trial. Journal of the National Cancer Institute 87, 13071315.
Boyle, P & Langman, JS (2000) ABC of colorectal cancer – epidemiology. British Medical Journal 321, 805808.
Bruce, WR, Giacca, A & Medline, A (2000) Possible mechanisms relating diet and risk of colon cancer. Cancer Epidemiology Biomarkers & Prevention 9, 12711279.
Burns, AJ & Rowland, IR (2000) Anti-carcinogenicity of probiotics and prebiotics. Current Issues in Intestinal Microbiology 1, 1324.
Challa, A, Rao, DR, Chawan, CB & Shackelford, L (1997) Bifidobacterium longum and lactulose suppress azoxymethane-induced colonic aberrant crypt foci in rats. Carcinogenesis 18, 517521.
Chang, WC, Chapkin, RS & Lupton, JR (1997) Predictive value of proliferation, differentiation and apoptosis as intermediate markers for colon tumorigenesis. Carcinogenesis 18, 721730.
Chaplin, MF (1998) Bile acids, fibre and colon cancer: the story unfolds. Journal of the Royal Society of Health 118, 5361.
Chaplin, MF, Chaudhury, S, Dettmar, PW, Sykes, J, Shaw, AD & Davies, GJ (2000) Effect of ispaghula husk on the faecal output of bile acids in healthy volunteers. Journal of Steroid Biochemistry and Molecular Biology 72, 283292.
Chung, DC (2000) The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis. Gastroenterology 119, 854865.
Clinton, SK (1992) Dietary protein and carcinogenesis. In Nutrition, Toxicity, and Cancer, pp. 455475 [Rowland, I, editor]. Boca Raton, FL: CRC Press.
Clinton, SK, Bostwick, DG, Olson, LM, Mangian, HJ & Visek, WJ (1988) Effects of ammonium acetate and sodium cholate on N-methyl-N′-nitro-N-nitrosoguanidine-induced colon carcinogenesis of rats. Cancer Research 48, 30353039.
Craven, PA & De Rubertis, FR (1988) Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation by unsaturated fatty acids. Gastroenterology 95, 676685.
Cummings, JH, Beatty, ER, Kingman, SM, Bingham, SA & Englyst, HN (1996) Digestion and physiological properties of resistant starch in the human large bowel. British Journal of Nutrition 75, 733747.
Cummings, JH, Macfarlane, GT & Englyst, HN (2001) Prebiotic digestion and fermentation. American Journal of Clinical Nutrition 73, Suppl., S415S420.
de-Kok, T, Van Faassen, A, Glinghammar, B, Pachen, D, Rafter, JJ, Baeten, C, Engels, L & Kleinjans, JCS (1999) Bile acid concentrations, cytotoxicity, and pH of fecal water from patients with colorectal adenomas. Digestive Diseases and Sciences 44, 22182225.
de-Kok, TM, van Faassen, A, Bausch-Goldbohm, RA, ten-Hoor, F & Kleinjans, JC (1992) Fecapentaene excretion and fecal mutagenicity in relation to nutrient intake and fecal parameters in humans on omnivorous and vegetarian diets. Cancer Letters 62, 1121.
Erdman, SH, Wu, HD, Hixson, LJ, Ahnen, DJ & Gerner, EW (1997) Assessment of mutations in Ki-ras and p53 in colon cancers from azoxymethane-and dimethylhydrazine-treated rats. Molecular Carcinogenesis 19, 137144.
Eriyamremu, GE & Adamson, I (1995) Alterations in rat colon feces exposed to an acute level of deoxycholate and fed on a Nigerian-like diet. Nutrition Research 15, 869880.
Faivre, J, Bedenne, L, Boutron, MC, Milan, C, Collonges, R & Arveux, P (1989) Epidemiological evidence for distinguishing subsites of colorectal cancer. Journal of Epidemiology and Community Health 43, 356361.
Fearon, ER & Vogelstein, B (1990) A genetic model for colorectal tumorigenesis. Cell 61, 759767.
Fontana, RJ, Lown, KS, Paine, MF, Fortlage, L, Santella, RM, Felton, JS, Knize, MG, Greenberg, A & Watkins, PB (1999) Effects of a chargrilled meat diet on expression of CYP3A, CYP1A, and P-glycoprotein levels in healthy volunteers. Gastroenterology 117, 8998.
Gestel, G, Besancon, P & Rouanet, JM (1994) Comparative evaluation of the effects of two different forms of dietary fibre (rice bran vs wheat bran) on rat colonic mucosa and faecal microflora. Annals of Nutrition and Metabolism 38, 249256.
Giovannucci, E & Goldin, B (1997) The role of fat, fatty acids, and total energy intake in the etiology of human colon cancer. American Journal of Clinical Nutrition 66, S1564S1571.
Giovannucci, E, Stampfer, MJ, Colditz, GA, Rimm, EB, Trichopoulos, D, Rosner, BA, Speizer, FE & Willett, WC (1993) Folate, methionine, and alcohol intake and risk of colorectal adenoma. Journal of the National Cancer Institute 85, 875884.
Glinghammar, B, Venturi, M, Rowland, IR & Rafter, JJ (1997) Shift from a dairy product-rich to a dairy product-free diet: influence on cytotoxicity and genotoxicity of fecal water – potential risk factors for colon cancer. American Journal of Clinical Nutrition 66, 12771282.
Goodlad, RA, Al-Mukhtar, MY, Ghatei, MA, Bloom, SR & Wright, NA (1983) Cell proliferation, plasma enteroglucagon and plasma gastrin levels in starved and refed rats. Virchows Archives B, Cell Pathology Including Molecular Pathology 43, 5562.
Govers, MJ, Lapre, JA, de Vries, HT & Van-der-Meer, R (1993) Dietary soybean protein compared with casein damages colonic epithelium and stimulates colonic epithelial proliferation in rats. Journal of Nutrition 123, 17091713.
Grasten, SM, Juntunen, KS, Poutanen, KS, Gylling, HK, Miettinen, TA & Mykkanen, HM (2000) Rye bread improves bowel function and decreases the concentrations of some compounds that are putative colon cancer risk markers in middle-aged women and men. Journal of Nutrition 130, 22152221.
Hamada, K, Umemoto, A, Kajikawa, A, Tanaka, M, Seraj, MJ, Nakayama, M, Kubota, A & Monden, Y (1994) Mucosa-specific DNA adducts in human small intestine: a comparison with the colon. Carcinogenesis 15, 26772680.
Hambly, RJ, Rumney, CJ, Fletcher, JM, Rijken, PJ & Rowland, IR (1997) Effects of high-and low-risk diets on gut microflora-associated biomarkers of colon cancer in human flora-associated rats. Nutrition and Cancer 27, 250255.
Heijnen, ML, van Amelsvoort, JM, Deurenberg, P & Beynen, AC (1998) Limited effect of consumption of uncooked (RS2) or retrograded (RS3) resistant starch on putative risk factors for colon cancer in healthy men. American Journal of Clinical Nutrition 67, 322331.
Helsby, NA, Zhu, S, Pearson, AE, Tingle, MD & Ferguson, LR (2000) Antimutagenic effects of wheat bran diet through modification of xenobiotic metabolising enzymes. Mutation Research 454, 7788.
Hill, MJ (1975) The role of colon anaerobes in the metabolism of bile acids and steroids and its relation to colon cancer. Cancer 36, Suppl., 23872400.
Hinzman, MJ, Novotny, C, Ullah, A & Shamsuddin, AM (1987) Fecal mutagen fecapentaene-12 damages mammalian colon epithelial DNA. Carcinogenesis 8, 14751479.
Hirai, N, Kingston, DG, Van Tassell, RL & Wilkins, TD (1982) Structure elucidation of a potent mutagen from human feces. Journal of the American Chemical Society 104, 6149.
Hirayama, K & Rafter, J (2000) The role of probiotic bacteria in cancer prevention. Microbes and Infection 2, 681686.
Hofmann, AF (1984) Chemistry and enterohepatic circulation of bile acids. Hepatology 4, Suppl., S4S14.
Hofmann, AF (1999) The continuing importance of bile acids in liver and intestinal disease. Archives of Internal Medicine 159, 26472658.
Hofstad, B & Vatn, M (1997) Growth rate of colon polyps and cancer. Gastrointestinal Endoscopy Clinics of North America 7, 345363.
Hofstad, B, Vatn, MH, Andersen, SN, Owen, RW, Larsen, S & Osnes, M (1998) The relationship between faecal bile acid profile with or without supplementation with calcium and antioxidants on recurrence and growth of colorectal polyps. European Journal of Cancer Prevention 7, 287294.
Holt, PR, Atillasoy, EO, Gilman, J, Guss, J, Moss, SF, Newmark, H, Fan, K, Yang, K & Lipkin, M (1998) Modulation of abnormal colonic epithelial cell proliferation and differentiation by low-fat dairy foods: a randomized controlled trial. Journal of the American Medical Association 280, 10741079.
Holzapfel, WH, Haberer, P, Snel, J, Schillinger, U & Huis-in't-Veld, JH (1998) Overview of gut flora and probiotics. International Journal of Food Microbiology 41, 85101.
Hong, MY, Chapkin, RS, Wild, CP, Morris, JS, Wang, N, Carroll, RJ, Turner, ND & Lupton, JR (1999) Relationship between DNA adduct levels, repair enzyme, and apoptosis as a function of DNA methylation by azoxymethane. Cell Growth and Differentiation 10, 749758.
Hughes, R (1999) The effects of diet on colonic N-nitrosation and biomarkers of DNA damage. PhD Thesis, University of Cambridge.
Hughes, R, Cross, AJ, Pollock, JR & Bingham, S (2001) Dose-dependent effect of dietary meat on endogenous colonic N-nitrosation. Carcinogenesis 22, 199202.
Hughes, R & Rowland, IR (2001) Stimulation of apoptosis by two prebiotic chicory fructans in the rat colon. Carcinogenesis 22, 4347.
Hylla, S, Gostner, A, Dusel, G, Anger, H, Bartram, HP, Christl, SU, Kasper, H & Scheppach, W (1998) Effects of resistant starch on the colon in healthy volunteers: possible implications for cancer prevention. American Journal of Clinical Nutrition 67, 136142.
International Agency for Research on Cancer (1997) Cancer incidence in five continents. Volume VII. IARC Scientific Publications i–xxxiv, 11240.
International Agency for Research on Cancer (2000) GLOBOCAN 2000:Cancer Incidence, Mortality and Prevalence Worldwide. International Agency for Research on Cancer, France.
Ichikawa, H & Sakata, T (1998) Stimulation of epithelial cell proliferation of isolated distal colon of rats by continuous colonic infusion of ammonia or short-chain fatty acids is non-additive. Journal of Nutrition 128, 843847.
Indian Cancer Society (1985) Cancer Incidence in Greater Bombay, by Religion and Sex 1973–1978. Bombay: The Indian Cancer Society.
Jenab, M & Thompson, LU (1996) The influence of flaxseed and lignans on colon carcinogenesis and beta-glucuronidase activity. Carcinogenesis 6, 13431348.
Johansen, C, Mellemgaard, A, Skov, T, Kjaergaard, J & Lynge, E (1993) Colorectal cancer in Denmark 1943–1988.. International Journal of Colorectal Disease 8, 4247.
Johansson, G, Holmen, A, Persson, L, Hogstedt, B, Wassen, C, Ottova, L & Gustafsson, JA (1998) Long-term effects of a change from a mixed diet to a lacto-vegetarian diet on human urinary and faecal mutagenic activity. Mutagenesis 13, 167171.
Kamano, T, Mikami, Y, Kurasawa, T, Tsurumaru, M, Matsumoto, M, Kano, M & Motegi, K (1999) Ratio of primary and secondary bile acids in feces: possible marker for colorectal cancer? Diseases of the Colon and Rectum 42, 668672.
Kemppainen, M, Raiha, I & Sourander, L (1997) A marked increase in the incidence of colorectal cancer over two decades in southwest Finland. Journal of Clinical Epidemiology 50, 147151.
Kleibeuker, JH, Mulder, NH, Cats, A, Van-der-Meer, R & de Vries, EG (1996a) Calcium and colorectal epithelial cell proliferation. Gut 39, 774775.
Kleibeuker, JH, Nagengast, FM & Van-der-Meer, R (1996b) Carcinogenesis in the colon. In Prevention and Early Detection of Colorectal Cancer, pp. 4662 [Young, GP, Rozen, P and Levin, B, editors]. London: WB Saunders Company Ltd.
Knize, MG, Dolbeare, FA, Cunningham, PL & Felton, JS (1995) Mutagenic activity and heterocyclic amine content of the human diet. Princess Takamatsu Symposium 23, 3038.
Kulldorff, M, McShane, LM, Schatzkin, A, Freedman, LS, Wargovich, MJ, Woods, C, Purewal, M, Burt, RW, Lawson, M, Mateski, DJ, Lanza, E, Corle, DK, O'Brien, B & Moler, J (2000) Measuring cell proliferation in the rectal mucosa. comparing bromodeoxyuridine (BrdU) and proliferating cell nuclear antigen (PCNA) assays. Journal of Clinical Epidemiology 53, 875883.
Lampe, JW, Chen, C, Li, S, Prunty, J, Grate, MT, Meehan, DE, Barale, KV, Dightman, DA, Feng, Z & Potter, JD (2000a) Modulation of human glutathione S-transferases by botanically defined vegetable diets. Cancer Epidemiology, Biomarkers and Prevention 9, 787793.
Lampe, JW, King, IB, Li, S, Grate, MT, Barale, KV, Chen, C, Feng, Z & Potter, JD (2000b) Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: changes in caffeine metabolite ratios in response to controlled vegetable diets. Carcinogenesis 21, 11571162.
Landi, MT, Sinha, R, Lang, NP & Kadlubar, FF (1999) Chapter 16. Human cytochrome P4501A2. IARC Scientific Publications, 173195.
Lang, NP, Butler, MA, Massengill, J, Lawson, M, Stotts, RC, Hauer-Jensen, M & Kadlubar, FF (1994) Rapid metabolic phenotypes for acetyltransferase and cytochrome P4501A2 and putative exposure to food-borne heterocyclic amines increase the risk for colorectal cancer or polyps. Cancer Epidemiology, Biomarkers and Prevention 3, 675682.
Lapre, JA, de Vries, HT & Van-der-Meer, R (1993) Cytotoxicity of fecal water is dependent on the type of dietary fat and is reduced by supplemental calcium phosphate in rats. Journal of Nutrition 123, 578585.
Lin, HC & Visek, WJ (1991) Colon mucosal cell damage by ammonia in rats. Journal of Nutrition 121, 887893.
Mac Donald, IA, Bokkenheuser, VD & Winter, J (1993) Degradation of steriods in the human gut. Journal of Lipid Research 24, 675700.
Mac Lennan, R, Macrae, F, Bain, C, Battistutta, D, Chapuis, P, Gratten, H, Lambert, J, Newland, RC, Ngu, M & Russell, A (1995) Randomized trial of intake of fat, fiber, and beta carotene to prevent colorectal adenomas. The Australian Polyp Prevention Project. Journal of the National Cancer Institute 87, 17601766.
Macrae, FA, Kilias, D, Selbie, L, Abbott, M, Sharpe, K & Young, GP (1997) Effect of cereal fibre source and processing on rectal epithelial cell proliferation. Gut 41, 239244.
Mallett, AK & Rowland, IR (1990) Bacterial enzymes: their role in the formation of mutagens and carcinogens in the intestine. Digestive Diseases 8, 7179.
Marchetti, MC, Migliorati, G, Moraca, R, Riccardi, C, Nicoletti, I, Fabiani, R, Mastrandrea, V & Morozzi, G (1997) Possible mechanisms involved in apoptosis of colon tumor cell lines induced by deoxycholic acid, short-chain fatty acids, and their mixtures. Nutrition and Cancer 28, 7480.
Massey, RC, Key, PE, Mallett, AK & Rowland, IR (1988) An investigation of the endogenous formation of apparent total N-nitroso compounds in conventional microflora and germ free rats. Food Chemistry and Toxicology 26, 595600.
Maziere, S, Meflah, K, Tavan, E, Champ, M, Narbonne, JF & Cassand, P (1998) Effect of resistant starch and/or fat-soluble vitamins A and E on the initiation stage of aberrant crypts in rat colon. Nutrition and Cancer 31, 168177.
McKeown-Eyssen, GE, Bright See, E, Bruce, WR, Jazmaji, V, Cohen, LB, Pappas, SC & Saibil, FG (1994) A randomized trial of a low fat high fibre diet in the recurrence of colorectal polyps. Toronto Polyp Prevention Group. Journal of Clinical Epidemiology 47, 525536.
McShane, LM, Kulldorff, M, Wargovich, MJ, Woods, C, Purewal, M, Freedman, LS, Corle, DK, Burt, RW, Mateski, DJ, Lawson, M, Lanza, E, O'Brien, B, Lake, W, Moler, J & Schatzkin, A (1998) An evaluation of rectal mucosal proliferation measure variability sources in the polyp prevention trial: can we detect informative differences among individuals' proliferation measures amid the noise? Cancer Epidemiology, Biomarkers and Prevention 7, 605612.
Melendez-Colon, VJ, Luch, A, Seidel, A & Baird, WM (1999) Cancer initiation by polycyclic aromatic hydrocarbons results from formation of stable DNA adducts rather than apurinic sites. Carcinogenesis 20, 18851891.
Mills, SJ, Mathers, JC, Chapman, PD, Burn, J & Gunn, A (2001) Colonic crypt cell proliferation state assessed by whole crypt microdissection in sporadic neoplasia and familial adenomatous polyposis. Gut 48, 4146.
Morotomi, M, Guillem, JG, Lo Gerfo, P & Weinstein, IB (1990) Production of diacylglycerol, an activator of protein kinase C, by human intestinal microflora. Cancer Research 50, 35953599.
Nagao, M & Sugimura, T (1993) Carcinogenic factors in food with relevance to colon cancer development. Mutation Research 290, 4351.
Nagengast, FM, Grubben, MJAL & van Munster, IP (1995) Role of bile acids in colorectal carcinogenesis. European Journal of Cancer 31a, 10671070.
Nair, PP, Davis, KE, Shami, S & Lagerholm, S (2000) The induction of SOS function in Escherichia coli K-12/PQ37 by 4-nitroquinoline oxide (4-NQO) and fecapentaenes-12 and -14 is bile salt sensitive: implications for colon carcinogenesis. Mutation Research 447, 179185.
Nalini, N, Sabitha, K, Viswanathan, P & Menon, VP (1998) Influence of spices on the bacterial (enzyme) activity in experimental colon cancer. Journal of Ethnopharmacology 62, 1524.
Narahara, H, Tatsuta, M, Iishi, H, Baba, M, Uedo, N, Sakai, N, Yano, H & Ishiguro, S (2000) K-ras point mutation is associated with enhancement by deoxycholic acid of colon carcinogenesis induced by azoxymethane, but not with its attenuation by all-trans-retinoic acid. International Journal of Cancer 88, 157161.
Nijhoff, WA, Grubben, MJ, Nagengast, FM, Jansen, JB, Verhagen, H, van Poppel, G & Peters, WH (1995) Effects of consumption of Brussels sprouts on intestinal and lymphocytic glutathione S-transferases in humans. Carcinogenesis 16, 21252128.
Norat, T & Riboli, E (2001) Meat consumption and colorectal cancer: A review of epidemiologic evidence. Nutrition Reviews 59, 3747.
O'Brian, CA & Ward, NE (1989) Biology of the protein kinase C family. Cancer and Metastasis Reviews 8, 199214.
O'Brien, MJ, Winawer, SJ, Zauber, AG, Gottlieb, LS, Sternberg, SS, Diaz, B, Dickersin, GR, Ewing, S, Geller, S & Kasimian, D (1990) The National Polyp Study. Patient and polyp characteristics associated with high-grade dysplasia in colorectal adenomas. Gastroenterology 98, 371379.
Ochsenkuhn, T, Bayerdorffer, E, Meining, A, Schinkel, M, Thiede, C, Nussler, V, Sackmann, M, Hatz, R, Neubauer, A & Paumgartner, G (1999) Colonic mucosal proliferation is related to serum deoxycholic acid levels. Cancer 85, 16641669.
O'Neill, IK, Loktionov, A, Manson, MM, Ball, H, Bandaletova, T & Bingham, SA (1997) Comparison of metabolic effects of vegetables and teas with colorectal proliferation and with tumour development in DMH-treated F344 rats. Cancer Letters 114, 287291.
Osswald, K, Becker, TW, Grimm, M, Jahreis, G & Pool-Zobel, BL (2000) Inter-and intra-individual variation of faecal water – genotoxicity in human colon cells. Mutation Research 472, 5970.
Otchy, DP, Ransohoff, DF, Wolff, BG, Weaver, A, Ilstrup, D, Carlson, H & Rademacher, D (1996) Metachronous colon cancer in persons who have had a large adenomatous polyp. American Journal of Gastroenterology 91, 448454.
Owen, DA (1996) Flat adenoma, flat carcinoma, and de novo carcinoma of the colon. Cancer 77, 36.
Payne, CM, Bernstein, H, Bernstein, C & Garewal, H (1995) Role of apoptosis in biology and pathology: resistance to apoptosis in colon carcinogenesis. Ultrastructural Pathology 19, 221248.
Pfohl-Leszkowicz, A, Grosse, Y, Carriere, V, Cugnenc, PH, Berger, A, Carnot, F, Beaune, P & de-Waziers, I (1995) High levels of DNA adducts in human colon are associated with colorectal cancer. Cancer Research 55, 56115616.
Phillips, J, Muir, JG, Birkett, A, Lu, ZX, Jones, GP, O'Dea, K & Young, GP (1995) Effect of resistant starch on fecal bulk and fermentation-dependent events in humans. American Journal of Clinical Nutrition 62, 121130.
Ponz de Leon, M & Percesepe, A (2000) Pathogenesis of colorectal cancer. Digestive and Liver Disease 32, 807821.
Ponz de Leon, M & Roncucci, L (2000) The cause of colorectal cancer. Digestive and Liver Disease 32, 426439.
Pool-Zobel, BL, Bub, A, Liegibel, UM, Treptow-van-Lishaut, S & Rechkemmer, G (1998) Mechanisms by which vegetable consumption reduces genetic damage in humans. Cancer Epidemiology, Biomarkers and Prevention 7, 891899.
Pool-Zobel, BL, Bub, A, Muller, H, Wollowski, I & Rechkemmer, G (1997) Consumption of vegetables reduces genetic damage in humans: first results of a human intervention trial with carotenoid-rich foods. Carcinogenesis 18, 18471850.
Pool-Zobel, BL & Leucht, U (1997) Induction of DNA damage by risk factors of colon cancer in human colon cells derived from biopsies. Mutation Research 375, 105115.
Pool-Zobel, BL, Neudecker, C, Domizlaff, I, Ji, S, Schillinger, U, Rumney, C, Moretti, M, Vilarini, I, Scassellati-Sforzolini, R & Rowland, I (1996) Lactobacillus-and bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutrition and Cancer 26, 365380.
Potter, JD (1999) Colorectal cancer: Molecules and populations. Journal of the National Cancer Institute 91, 916932.
Potter, JD, Slattery, ML, Bostick, RM & Gapstur, SM (1993) Colon cancer: a review of the epidemiology. Epidemiologic Reviews 15, 499545.
Povey, AC, Hall, CN, Badawi, AF, Cooper, DP & O'Connor, PJ (2000) Elevated levels of the pro-carcinogenic adduct, O(6)-methylguanine, in normal DNA from the cancer prone regions of the large bowel. Gut 47, 362365.
Powolny, A, Xu, J & Loo, G (2001) Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53. International Journal of Biochemistry and Cell Biology 33, 193203.
Radley, S, Pongracz, J, Lord, J & Neoptolemos, JP (1996) Bile acids and colorectal cancer. Cancer Topics 10, 27.
Rafter, JJ, Child, P, Anderson, AM, Alder, R, Eng, V & Bruce, WR (1987) Cellular toxicity of fecal water depends on diet. American Journal of Clinical Nutrition 45, 559563.
Rao, CV, Chou, D, Simi, B, Ku, H & Reddy, BS (1998) Prevention of colonic aberrant crypt foci and modulation of large bowel microbial activity by dietary coffee fiber, inulin and pectin. Carcinogenesis 19, 18151819.
Reddy, BS (1998) Prevention of colon cancer by pre-and probiotics: evidence from laboratory studies. British Journal of Nutrition 80, S219S223.
Reddy, BS, Engle, A, Simi, B & Goldman, M (1992) Effect of dietary fiber on colonic bacterial enzymes and bile acids in relation to colon cancer. Gastroenterology 102, 14751482.
Reddy, BS, Mangat, S, Weisburger, JH & Wynder, EL (1977) Effect of high-risk diets for colon carcinogenesis on intestinal mucosal and bacterial beta-glucuronidase activity in F344 rats. Cancer Research 37, 35333536.
Reddy, BS, Weisburger, JH & Wynder, EL (1974) Fecal bacterial beta-glucuronidase: control by diet. Science 183, 416417.
Reinacher-Schick, A, Seidensticker, F, Petrasch, S, Reiser, M, Philippou, S, Theegarten, D, Freitag, G & Schmiegel, W (2000) Mesalazine changes apoptosis and proliferation in normal mucosa of patients with sporadic polyps of the large bowel. Endoscopy 32, 245254.
Rieger, MA, Parlesak, A, Pool-Zobel, BL, Rechkemmer, G & Bode, C (1999) A diet high in fat and meat but low in dietary fibre increases the genotoxic potential of faecal water. Carcinogenesis 20, 23112316.
Rowland, IR (1988) Factors affecting metabolic activity of the intestinal microflora. Drug Metabolism Reviews 19, 243261.
Rowland, IR, Granli, T, Bockman, OC, Key, PE & Massey, RC (1991) Endogenous N-nitrosation in man assessed by measurement of apparent total N-nitroso compounds in faeces. Carcinogenesis 12, 13951401.
Rowland, IR, Mallett, AK & Wise, A (1985) The effect of diet on the mammalian gut flora and its metabolic activities. Critical Reviews in Toxicology 16, 31103.
Rowland, IR, Rumney, CJ, Coutts, JT & Lievense, LC (1998) Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis 19, 281285.
Rowland, IR & Tanaka, R (1993) The effects of transgalactosylated oligosaccharides on gut flora metabolism in rats associated with a human faecal microflora. Journal of Applied Bacteriology 74, 667674.
Rumney, CJ, Rowland, IR, Coutts, TM, Randerath, K, Reddy, R, Shah, AB, Ellul, A & O'Neill, IK (1993a) Effects of risk-associated human dietary macrocomponents on processes related to carcinogenesis in human-flora-associated (HFA) rats. Carcinogenesis 14, 7984.
Rumney, CJ, Rowland, IR & O'Neill, IK (1993b) Conversion of IQ to 7-OHIQ by gut microflora. Nutrition and Cancer 19, 6776.
Sant, M, Capocaccia, R, Verdecchia, A, Gatta, G, Micheli, A, Mariotto, A, Hakulinen, T & Berrino, F (1995) Comparisons of colon-cancer survival among European countries: The Eurocare Study. International Journal of Cancer 63, 4348.
Schatzkin, A, Lanza, E, Corle, D, Lance, P, Iber, F, Caan, B, Shike, M, Weissfeld, J, Burt, R, Cooper, MR, Kikendall, JW & Cahill, J (2000) Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. Polyp Prevention Trial Study Group. New England Journal of Medicine 342, 11491155.
Schiffman, MH, Van-Tassell, RL, Robinson, A, Smith, L, Daniel, J, Hoover, RN, Weil, R, Rosenthal, J, Nair, PP & Schwartz, S (1989) Case–control study of colorectal cancer and fecapentaene excretion. Cancer Research 49, 13221326.
Schmid, K, Nair, J, Winde, G, Velic, I & Bartsch, H (2000) Increased levels of promutagenic etheno-DNA adducts in colonic polyps of FAP patients. International Journal of Cancer 87, 14.
Serraino, M & Thompson, LU (1992) Flaxseed supplementation and early markers of colon carcinogenesis. Cancer Letters 63, 159165.
Sesink, AL, Termont, DS, Kleibeuker, JH & Van-der-Meer, R (2000) Red meat and colon cancer: dietary haem, but not fat, has cytotoxic and hyperproliferative effects on rat colonic epithelium. Carcinogenesis 21, 19091915.
Sesink, ALA, Termont, D, Kleibeuker, JH & Van der Meer, R (1999) Red meat and colon cancer: The cytotoxic and hyperproliferative effects of dietary heme. Cancer Research 59, 57045709.
Shamsuddin, AM, Ullah, A, Baten, A & Hale, E (1991) Stability of fecapentaene-12 and its carcinogenicity in F-344 rats. Carcinogenesis 12, 601607.
Shih, H, Pickwell, GV & Quattrochi, LC (2000) Differential effects of flavonoid compounds on tumor promoter-induced activation of the human CYP1A2 enhancer. Archives of Biochemistry and Biophysics 373, 287294.
Silvester, KR, Bingham, SA, Pollock, JRA, Cummings, JH & O'Neill, IK (1997) Effect of meat and resistant starch on fecal extraction of apparent N-nitroso compounds and ammonia from the human large bowel. Nutrition and Cancer 29, 1323.
Silvi, S, Rumney, CJ, Cresci, A & Rowland, IR (1999) Resistant starch modifies gut microflora and microbial metabolism in human flora-associated rats inoculated with faeces from Italian and UK donors. Journal of Applied Microbiology 86, 521530.
Simons, BD, Morrison, AS, Lev, R & Verhoek-Oftedahl, W (1992) Relationship of polyps to cancer of the large intestine. Journal of the National Cancer Institute 84, 962966.
Singh, J, Hamid, R & Reddy, BS (1997a) Dietary fat and colon cancer: modulating effect of types and amount of dietary fat on ras-p21 function during promotion and progression stages of colon cancer. Cancer Research 57, 253258.
Singh, J, Rivenson, A, Tomita, M, Shimamura, S, Ishibashi, N & Reddy, BS (1997b) Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis 18, 833841.
Sinha, R, Kulldorff, M, Chow, WH, Denobile, J & Rothman, N (2001) Dietary intake of heterocyclic amines, meat-derived mutagenic activity, and risk of colorectal adenomas. Cancer Epidemiology Biomarkers & Prevention 10, 559562.
Slattery, ML, Potter, JD, Coates, A, Ma, KN, Berry, TD, Duncan, DM & Caan, BJ (1997) Plant foods and colon cancer: an assessment of specific foods and their related nutrients (United States). Cancer Causes and Control 8, 575590.
Sousa, RL & Marletta, MA (1985) Inhibition of cytochrome P-450 activity in rat liver microsomes by the naturally occurring flavonoid, quercetin. Archives of Biochemistry and Biophysics 240, 345357.
Souza, RF (2001) Review article: a molecular rationale for the how, when and why of colorectal cancer screening. Alimentary Pharmacology & Therapeutics 15, 451462.
Steinbach, G, Morotomi, M, Nomoto, K, Lupton, J, Weinstein, IB & Holt, PR (1994) Calcium reduces the increased fecal 1,2-sn-diacylglycerol content in intestinal bypass patients: a possible mechanism for altering colonic hyperproliferation. Cancer Research 54, 12161219.
Stocks, P (1957) Cancer incidence in North Wales and Liverpool region in relation to habit and environment. British Imperial Cancer Campaign, 35th Annual report 1, 27.
St-Onge, MP (2000) Consumption of fermented and non fermented dairy products: effects on cholesterol concentrations and metabolism. American Journal of Clinical Nutrition 71, 674681.
Su, L (2001) Nutritional status of folate and colon cancer risk; evidence from NHANES I epidemiologic follow-up study. Annals of Epidemiology 11, 6572.
Suaeyun, R, Kinouchi, T, Arimochi, H, Vinitketkumnuen, U & Ohnishi, Y (1997) Inhibitory effects of lemon grass (Cymbopogon citratus Stapf) on formation of azoxymethane-induced DNA adducts and aberrant crypt foci in the rat colon. Carcinogenesis 18, 949955.
Szarka, CE, Pfeiffer, GR, Hum, ST, Everley, LC, Balshem, AM, Moore, DF, Litwin, S, Goosenberg, EB, Frucht, H & Engstrom, PF (1995) Glutathione S-transferase activity and glutathione S-transferase mu expression in subjects with risk for colorectal cancer. Cancer Research 55, 27892793.
Takada, H, Hirooka, T, Hiramatsu, Y & Yamamoto, M (1982) Effect of beta-glucuronidase inhibitor on azoxymethane-induced colonic carcinogenesis in rats. Cancer Research 42, 331334.
Thompson, MH, Owen, RW, Hill, MJ & Cummings, JH (1985) Factors affecting faecal bile acid concentrations: effect of fat and fibre. Biochemical Society Transactions 13, 392.
Treptow van Lishaut, S, Rechkemmer, G, Rowland, I, Dolara, P & Pool-Zobel, BL (1999) The carbohydrate crystalean and colonic microflora modulate expression of glutathione S-transferase subunits in colon of rats. European Journal of Nutrition 38, 7683.
Van der Meer, R, Lapre, JA, Govers, MJ & Kleibeuker, JH (1997) Mechanisms of the intestinal effects of dietary fats and milk products on colon carcinogenesis. Cancer Letters 114, 7583.
Van der Meer, R, Termont, DS & de Vries, HT (1991) Differential effects of calcium ions and calcium phosphate on cytotoxicity of bile acids. American Journal of Physiology 260, G142G147.
Van Gorkom, BA, Karrenbeld, A, van der Sluis, T, Koudstaal, J, de Vries, EG & Kleibeuker, JH (2000) Influence of a highly purified senna extract on colonic epithelium. Digestion 61, 113120.
Van Munster, IP, Tangerman, A & Nagengast, FM (1994) Effect of resistant starch on colonic fermentation, bile acid metabolism, and mucosal proliferation. Digestive Diseases and Sciences 39, 834842.
Van Tassell, RL, Kingston, DG & Wilkins, TD (1990) Metabolism of dietary genotoxins by the human colonic microflora; the fecapentaenes and heterocyclic amines. Mutation Research 238, 209221.
Van Tassell, RL, Mac Donald, DK & Wilkins, TD (1982a) Production of a fecal mutagen by Bacteroides spp. Infection Immunology 37, 975.
Van Tassell, RL, Mac Donald, DK & Wilkins, TD (1982b) Stimulation of mutagen production in human feces by bile and bile acids. Mutation Research 103, 233239.
Vaughan, DJ, Furrer, R, Baptista, J & Krepinsky, JJ (1987) The effect of fecapentaenes on nuclear aberrations in murine colonic epithelial cells. Cancer Letters 37, 199203.
Venitt, S, Bosworth, D & Alldrick, AJ (1986) Pilot study of the effect of diet on the mutagenicity of human faeces. Mutagenesis 1, 353358.
Venturi, M, Hambly, RJ, Glinghammar, B, Rafter, JJ & Rowland, IR (1997) Genotoxic activity in human faecal water and the role of bile acids: a study using the alkaline comet assay. Carcinogenesis 18, 23532359.
Villalon, L, Tuchweber, B & Yousef, IM (1992) Low protein diets potentiate lithocholic acid-induced cholestasis in rats. Journal of Nutrition 122, 15871596.
Visek, WJ (1978) Diet and cell growth modulation by ammonia. American Journal of Clinical Nutrition 31, S216S220.
Vogelstein, B, Fearon, ER, Hamilton, SR, Kern, SE, Preisinger, AC, Leppert, M, Nakamura, Y, White, R, Smits, AM & Bos, JL (1988) Genetic alterations during colorectal-tumor development. New England Journal of Medicine 319, 525532.
Ward, JM, Anjo, T, Ohannesian, L, Keefer, LK, Devor, DE, Donovan, PJ, Smith, GT, Henneman, JR, Streeter, AJ & Konishi, N (1988) Inactivity of fecapentaene-12 as a rodent carcinogen or tumor initiator. Cancer Letters 42, 4959.
World Cancer Research Fund (1997) Diet, Nutrition and the Prevention of Cancer: A Global Perspective. Washington, DC: World Cancer Research Fund/American Institute.
Wehrmann, K & Fruhmorgen, P (2000) [Removing adenomas reduces colon carcinoma risk up to 90 %. Effective cancer prevention with the endoscope]. MMW Fortsch Med 142, 2629.
Weisburger, JH, Jones, RC, Wang, CX, Backlund, JY, Williams, GM, Kingston, DG, Van-Tassell, RL, Keyes, RF, Wilkins, TD & de Wit, PP (1990) Carcinogenicity tests of fecapentaene-12 in mice and rats. Cancer Letters 49, 8998.
Wilkins, TD, Lederman, M, Van Tassell, RL, Kingston, DG & Henion, J (1980) Characterization of a mutagenic bacterial product in human feces. American Journal of Clinical Nutrition 33, 25132520.
Wilson, RG, Smith, AN & Bird, CC (1990) Immunohistochemical detection of abnormal cell proliferation in colonic mucosa of subjects with polyps. Journal of Clinical Pathology 43, 744747.
Wollowski, I, Ji, ST, Bakalinsky, AT, Neudecker, C & Pool-Zobel, BL (1999) Bacteria used for the production of yogurt inactivate carcinogens and prevent DNA damage in the colon of rats. Journal of Nutrition 129, 7782.
Yanagihara, K, Ito, A, Toge, T & Numoto, M (1993) Antiproliferative effects of isoflavones on human cancer cell lines established from the gastrointestinal tract. Cancer Research 53, 58155821.
Zarkovic, M, Qin, X, Nakatsuru, Y, Oda, H, Nakamura, T, Shamsuddin, AM & Ishikawa, T (1993) Tumor promotion by fecapentaene-12 in a rat colon carcinogenesis model. Carcinogenesis 14, 12611264.
Zock, PL (2001) Dietary fats and cancer. Current Opinion in Lipidology 12, 510.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed