Skip to main content Accessibility help
×
×
Home

Dietary histidine requirement to reduce the risk and severity of cataracts is higher than the requirement for growth in Atlantic salmon smolts, independently of the dietary lipid source

  • S. C. Remø (a1), E. M. Hevrøy (a1), P. A. Olsvik (a1), R. Fontanillas (a2), O. Breck (a3) and R. Waagbø (a1)...

Abstract

The present study was carried out to investigate whether the dietary histidine requirement to reduce cataract development is higher than that for growth in Atlantic salmon smolts (Salmo salar L.) after seawater transfer and whether dietary vegetable oils contribute to cataractogenesis. Duplicate groups of salmon smolts were fed ten experimental diets with either fish oil (FO) or a vegetable oil (VO) mix replacing 70 % FO and histidine at five target levels (10, 12, 14, 16 and 18 g His/kg diet) for 13 weeks after seawater transfer. The VO diet-fed fish exhibited somewhat inferior growth and feed intakes compared with the FO diet-fed fish, irrespective of the dietary histidine concentration. Both cataract prevalence and severity were negatively correlated with the dietary histidine concentration, while lens N-acetyl-histidine (NAH) concentrations were positively correlated with it. The fatty acid profiles of muscle, heart and lens reflected that of the dietary oils to a descending degree and did not affect the observed cataract development. Muscle, heart and brain histidine concentrations reflected dietary histidine concentrations, while the corresponding tissue imidazole (anserine, carnosine and NAH) concentrations appeared to saturate differently with time. The expression level of liver histidase was not affected by the dietary histidine concentration, while the liver antioxidant response was affected in the VO diet-fed fish on a transcriptional level. The lowest severity of cataracts could be achieved by feeding 13·4 g His/kg feed, independently of the dietary lipid source. However, the present study also suggests that the dietary histidine requirement to minimise the risk of cataract development is 14·4 g His/kg feed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary histidine requirement to reduce the risk and severity of cataracts is higher than the requirement for growth in Atlantic salmon smolts, independently of the dietary lipid source
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary histidine requirement to reduce the risk and severity of cataracts is higher than the requirement for growth in Atlantic salmon smolts, independently of the dietary lipid source
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary histidine requirement to reduce the risk and severity of cataracts is higher than the requirement for growth in Atlantic salmon smolts, independently of the dietary lipid source
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: S. C. Remø, fax +47 55905299, email sofie.remo@nifes.no

References

Hide All
1 Bjerkås, E, Breck, O & Waagbø, R (2006) The role of nutrition in cataract formation in farmed fish. CAB Rev 1, 116.
2 Wall, AE (1998) Cataracts in farmed Atlantic salmon (Salmo salar) in Ireland, Norway and Scotland from 1995 to 1997. Vet Rec 142, 626631.
3 Breck, O, Bjerkås, E, Campbell, P, et al. (2003) Cataract preventative role of mammalian blood meal, histidine, iron and zinc in diets for Atlantic salmon (Salmo salar L.) of different strains. Aquacult Nutr 9, 341350.
4 Breck, O, Bjerkås, E, Campbell, P, et al. (2005) Histidine nutrition and genotype affect cataract development in Atlantic salmon, Salmo salar L. J Fish Dis 28, 357371.
5 Waagbø, R, Tröße, C, Koppe, W, et al. (2010) Dietary histidine supplementation prevents cataract development in adult Atlantic salmon, Salmo salar L., in seawater. Br J Nutr 104, 14601470.
6 Breck, O, Bjerkås, E, Sanderson, J, et al. (2005) Dietary histidine affects lens protein turnover and synthesis of N-acetylhistidine in Atlantic salmon (Salmo salar L.) undergoing parr–smolt transformation. Aquacult Nutr 11, 321332.
7 Baslow, MH (1998) Function of the N-acetyl-l-histidine system in the vertebrate eye. Evidence in support of a role as a molecular water pump. J Mol Neurosci 10, 193208.
8 Rhodes, JD, Breck, O, Waagbo, R, et al. (2010) N-Acetylhistidine, a novel osmolyte in the lens of Atlantic Salmon (Salmo salar L.). Am J Physiol Regul Integr Comp Physiol 299, R1075R1081.
9 Breck, O & Sveier, H (2001) Growth and cataract development in two groups of Atlantic salmon (Salmo salar L.) post smolts transferred to sea with a four-week interval. Bull Eur Assoc Fish Pathol 21, 91103.
10 Babizhayev, MA, Deyev, AI, Yermakova, VN, et al. (2004) Lipid peroxidation and cataracts. N-Acetylcarnosine as a therapeutic tool to manage age-related cataracts in human and in canine eyes. Drugs R D 5, 125139.
11 Remø, SC, Olsvik, PA, Torstensen, BE, et al. (2011) Susceptibility of Atlantic salmon lenses to hydrogen peroxide oxidation ex vivo after being fed diets with vegetable oil and methylmercury. Exp Eye Res 92, 414424.
12 Togashi, M, Okuma, E & Abe, H (1998) HPLC determination of N-acetyl-l-histidine and its related compounds in fish tissues. Fish Sci 64, 174175.
13 Ogata, H & Murai, T (1994) White muscle of masu salmon, Oncorhynchus masou masou, smolts possesses a strong buffering capacity due to a high level of anserine. Fish Physiol Biochem 13, 285293.
14 Ogata, HY, Konno, S & Silverstein, JT (1998) Muscular buffering capacity of the parr and smolts in Oncorhynchus masou . Aquaculture 168, 303310.
15 Ogata, HY (2002) Muscle buffering capacity of yellowtail fed diets supplemented with crystalline histidine. J Fish Biol 61, 15041512.
16 Torres, N, Beristain, L, Bourges, H, et al. (1999) Histidine-imbalanced diets stimulate hepatic histidase gene expression in rats. J Nutr 129, 19791983.
17 Wade, AM & Tucker, HN (1998) Antioxidant characteristics of l-histidine. J Nutr Biochem 9, 308315.
18 Waagbø, R, Breck, O & Torstensen, B (2004) Dietary lipid regimes can affect cataract development in Atlantic salmon (Salmo salar L.) growers. 11th International Symposium on Nutrition and Feeding in Fish, May 2–7, Phuket, Thailand..
19 RAFOA (2005) Researching Alternatives to Fish Oils in Aquaculture. http://www.rafoa.stir.ac.uk/project_results.html (accessed accessed November 2013).
20 Tröße, C, Rhodes, JD, Sanderson, J, et al. (2010) Effect of plant-based feed ingredients on osmoregulation in the Atlantic salmon lens. Comp Biochem Physiol B Biochem Mol Biol 155, 354362.
21 Turchini, GM, Torstensen, BE & Ng, W-K (2009) Fish oil replacement in finfish nutrition. Rev Aquaculture 1, 1057.
22 NRC (2011) Nutrient Requirement of Fish and Shrimp. Washington, DC: National Academy Press.
23 Bjerkås, E, Bjørnestad, E, Breck, O, et al. (2001) Water temperature regimes affect cataract development in smolting Atlantic salmon, Salmo salar L. J Fish Dis 24, 281291.
24 Wall, T & Bjerkås, E (1999) A simplified method of scoring cataracts in fish. Bull Eur Assoc Fish Pathol 19, 162165.
25 EC, (1998) Commission Directive 98/64/EC of 3 September 1998. Establishing community methods of analysis for the determination of amino acids, crude oils and fats, and olaquindox in feeding stuffs and amending Directive 71/393/EEC. In Commission directive 98/64/EC. Brussels: EC.
26 Grahl-Nielsen, O & Barnung, T (1985) Variations in the fatty acid profile of marine animals caused by environmental and developmental changes. Mar Environ Res 17, 218221.
27 O'Dowd, JJ, Cairns, MT, Trainor, M, et al. (1990) Analysis of carnosine, homocarnosine, and other histidyl derivatives in rat brain. J Neurochem 55, 446452.
28 Jordal, A-E, Lie, Ø & Torstensen, B (2007) Complete replacement of dietary fish oil with a vegetable oil blend affect liver lipid and plasma lipoprotein levels in Atlantic salmon (Salmo salar L.). Aquacult Nutr 13, 114130.
29 Lie, Ø & Lambertsen, G (1991) Fatty acid composition of glycerophospholipids in seven tissues of cod (Gadus morhua), determined by combined high-performance liquid chromatography and gas chromatography. J Chromatogr 565, 119129.
30 Sandnes, K, Lie, Ø & Waagbø, R (1988) Normal ranges of some blood chemistry parameters in adult farmed Atlantic salmon, Salmo salar . J Fish Biol 32, 129136.
31 Hamre, K, Næss, T, Espe, M, et al. (2001) A formulated diet for Atlantic halibut (Hippoglossus hippoglossus, L.) larvae. Aquacult Nutr 7, 123132.
32 Julshamn, K, Maage, A, Norli, HS, et al. (2007) Determination of arsenic, cadmium, mercury and lead by inductively coupled plasma/mass spectrometry in foods after pressure digestion. NMKL interlaboratory study. J AOAC Int 90, 846858.
33 Andersen, F, Lygren, B, Maage, A, et al. (1998) Interaction between two dietary levels of iron and two forms of ascorbic acid and the effect on growth, antioxidant status and some non-specific immune parameters in Atlantic salmon (Salmo salar) smolts. Aquaculture 161, 437451.
34 Olsvik, PA, Torstensen, BE, Hemre, GI, et al. (2011) Hepatic oxidative stress in Atlantic salmon (Salmo salar L.) transferred from a diet based on marine feed ingredients to a diet based on plant ingredients. Aquacult Nutr 17, e424e436.
35 Vandesompele, J, De Preter, K, Pattyn, F, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, RESEARCH0034.
36 Gatlin III, DM, Barrows, FT, Brown, P, et al. (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult Res 38, 551579.
37 Glencross, BD, Booth, M & Allan, GL (2007) A feed is only as good as its ingredients – a review of ingredient evaluation strategies for aquaculture feeds. Aquacult Nutr 13, 1734.
38 Sales, J & Glencross, B (2010) A meta-analysis of the effects of dietary marine oil replacement with vegetable oils on growth, feed conversion and muscle fatty acid composition of fish species. Aquacult Nutr 17, e271e287.
39 Waagbø, R, Sandnes, K, Sandvin, A, et al. (1991) Feeding three levels of n-3 polyunsaturated fatty acids at two levels of vitamin E to Atlantic salmon (Salmo salar). Growth and chemical composition. Fisk Dir Skr Ser Ernæring 4, 5163.
40 Waagbø, R, Sandnes, K, Jørgensen, J, et al. (1993) Health aspects of dietary lipid sources and vitamin E in Atlantic salmon (Salmo salar). II. Spleen and erythrocyte phospholipid fatty acid composition, nonspecific immunity and disease resistance. Fisk Dir Skr Ser Ernæring 6, 6379.
41 Waagbø, R, Sandnes, K, Lie, Ø, et al. (1993) Health aspects of dietary lipid sources and vitamin E in Atlantic salmon (Salmo salar). I. Erythrocyte total lipid fatty acid composition, haematology and humoral immune response. Fisk Dir Skr Ser Ernæring 6, 4762.
42 Ruyter, B, Røsjø, C, Einen, O, et al. (2000) Essential fatty acids in Atlantic salmon: effects of increasing dietary doses of n-6 and n-3 fatty acids on growth, survival and fatty acid composition of liver, blood and carcass. Aquacult Nutr 6, 119127.
43 Torstensen, BE, Espe, M, Sanden, M, et al. (2008) Novel production of Atlantic salmon (Salmo salar) protein based on combined replacement of fish meal and fish oil with plant meal and vegetable oil blends. Aquaculture 285, 193200.
44 Abe, H (2000) Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Moscow) 65, 757765.
45 Waagbø, R (2008) Reducing production related diseases in farmed fish. In Improving Farmed Fish Quality and Safety, pp. 363398 [Lie, Ø, editor]. Cambridge, UK: VS Woodhead Publishing.
46 Bell, JG, McVicar, AH, Park, MT, et al. (1991) High dietary linoleic acid affects the fatty acid compositions of individual phospholipids from tissues of Atlantic salmon (Salmo salar): association with stress susceptibility and cardiac lesion. J Nutr 121, 11631172.
47 Vaughan-Jones, RD, Spitzer, KW & Swietach, P (2009) Intracellular pH regulation in heart. J Mol Cell Cardiol 46, 318331.
48 Baslow, MH, Turlapaty, P & Lenney, JF (1969) N-acetylhistidine metabolism in the brain, heart and lens of the goldfish, Carassius auratus, in vivo: evidence of rapid turnover and a possible intermediate. Life Sci 8, 535541.
49 Koch, A, Radovits, T, Loganathan, S, et al. (2009) Myocardial protection with the use of l-arginine and N-α-acetyl-histidine. Transplant Proc 41, 25922594.
50 Kim, K-I, Grimshaw, TW, Kayes, TB, et al. (1992) Effects of fasting or feeding diets containing different levels of protein or amino acids on the activities of the liver amino acid-degrading enzymes and amino acid oxidation in rainbow trout (Oncorhynchus mykiss). Aquaculture 107, 89105.
51 Kang-Lee, YAE & Harper, AE (1977) Effect of histidine intake and hepatic histidase activity on the metabolism of histidine in vivo . J Nutr 107, 14271443.
52 Aoyama, Y, Takagi, M & Yoshida, A (1995) Excess dietary histidine accumulates lipids in rat liver. Comp Biochem Physiol A Mol Integr Physiol 112, 503509.
53 Glover, CN & Hogstrand, C (2002) Amino acid modulation of in vivo intestinal zinc absorption in freshwater rainbow trout. J Exp Biol 205, 151158.
54 Glover, CN, Bury, NR & Hogstrand, C (2003) Zinc uptake across the apical membrane of freshwater rainbow trout intestine is mediated by high affinity, low affinity, and histidine-facilitated pathways. Biochim Biophys Acta 1614, 211219.
55 Glover, CN & Wood, CM (2008) Histidine absorption across apical surfaces of freshwater rainbow trout intestine: mechanistic characterization and the influence of copper. J Membr Biol 221, 8795.
56 Seierstad, SL, Haugland, Ø, Larsen, S, et al. (2009) Pro-inflammatory cytokine expression and respiratory burst activity following replacement of fish oil with rapeseed oil in the feed for Atlantic salmon (Salmo salar L.). Aquaculture 289, 212218.
57 Meydani, SN, Claycombe, KJ & Sacristan, C (2001) Vitamin E and gene expression. In Nutrient–Gene Interactions in Health and Disease, pp. 393424 [Moustaid-Moussa, N and Berdanier, CD, editors]. Boca Raton, FL: CRC Press.
58 Singh, U & Devaraj, S (2007) Vitamin E: inflammation and atherosclerosis. In Vitamins and Hormones [Litwack, G, editor]. San Diego, CA: Academic Press.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Remø Supplementary Material
Table S1

 Word (35 KB)
35 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed