Skip to main content Accessibility help
×
×
Home

Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn's disease

  • Miranda C. E. Lomer (a1), Carol Hutchinson (a2), Sara Volkert (a2), Simon M. Greenfield (a3), Adrian Catterall (a4), Richard P. H. Thompson (a1) and Jonathan J. Powell (a1) (a5)...

Abstract

Dietary microparticles are non-biological, bacterial-sized particles. Endogenous sources are derived from intestinal Ca and phosphate secretion. Exogenous sources are mainly titanium dioxide (TiO2) and mixed silicates (Psil); they are resistant to degradation and accumulate in human Peyer's patch macrophages and there is some evidence that they exacerbate inflammation in Crohn's disease (CD). However, whether their intake differs between those with and without CD has not been studied. We aimed to identify dietary microparticle sources and intakes in subjects with and without CD. Patients with inactive CD and matched general practice-based controls (ninety-one per group) completed 7d food diaries. Intake data for dietary fibre and sucrose were compared as positive controls. All foods, pharmaceuticals and toothpastes were examined for microparticle content, and intakes of Ca and exogenous microparticles were compared between the two groups. Dietary intakes were significantly different between cases and controls for dietary fibre (12 (SD 5) v. 14 (sd 5) g/d; P=0.001) and sucrose (52 (sd 27) v. 45 (sd 18) g/d; P=0·04) but not for Ca. Estimated median TiO2 and Psil intakes (2·5 and 35mg/individual per d respectively, totalling 1012–1013 microparticles/individual per d) were broadly similar to per capita estimates and while there was wide variation in intakes between individuals there was no significant difference between subjects with CD and controls. Hence, if exposure to microparticles is associated with the inflammation of CD, then the present study rules out excess intake as the problem. Nonetheless, microparticle-containing foods have now been identified which allows a low-microparticle diet to be further assessed in CD.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn's disease
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn's disease
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn's disease
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Miranda C. E. Lomer, fax +44 20 7188 2510, email, miranda.lomer@kcl.ac.uk

References

Hide All
Anderson, SHC, Elliott, H, Wallis, DJ, Canham, LT & Powell, JJ (2003) Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys Stat Sol 197, 331335.
Ballegaard, M, Bjergstrom, A, Brondum, S, Hylander, E, Jensen, L & Ladefoged, K (1997) Self-reported food intolerance in chronic inflammatory bowel disease. Scand J Gastroenterol 32, 569571.
Barhnart, WE, Hiller, LK, Leonard, GJ & Michaels, SE (1974) Dentifrice usage and ingestion among four age groups. J Dental Res 53, 13171322.
Bengmark, S (2001) Pre-, pro- and synbiotics. Curr Opin Clin Nutr Metab Care 4, 571579.
Bingham, SA, Gill, C & Welch, A (1997) Validation of dietary assessment methods in the UK arm of EPIC using weighed records, and 24-hour urinary nitrogen and potassium and serum vitamin C and carotenoids as biomarkers. Int J Epidemiol 26, S137S151.
Brauer, PM, Gee, MI, Grace, M & Thomson, AB (1983) Diet of women with Crohn's and other gastrointestinal diseases. J Am Diet Assoc 82, 659664.
Breuer-Katschinski, BD, Hollander, N & Goebell, H (1996) Effect of cigarette smoking on the course of Crohn's disease. Eur J Gastroenterol Hepatol 8, 225228.
Cosnes, J, Carbonnel, F, Carrat, F, Beaugerie, L, Cattan, S & Gendre, J (1999) Effects of current and former cigarette smoking on the clinical course of Crohn's disease. Aliment Pharmacol Ther 13, 14031411.
Department of HealthDepartment of Health (1989) Dietary Sugars and Human Disease. Report on Health and Social Subjects no. 37 London: H.M. Stationery Office
Department of HealthDepartment of Health (1991) Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Report on Health and Social Subjects no. 41 London: H.M. Stationery Office
Ellis, RD, Goodlad, JR, Limb, GA, Powell, JJ, Thompson, RP & Punchard, NA (1998) Activation of nuclear factor kappa B in Crohn's disease. Inflamm Res 47, 440445.
Evans, SM, Ashwood, P, Warley, A, Berisha, F, Thompson, RP & Powell, JJ (2002) The role of dietary microparticles and calcium in apoptosis and interleukin-1beta release of intestinal macrophages. Gastroenterology 123, 15431553.
Gee, MI, Grace, MG, Wensel, RH, Sherbaniuk, RW & Thomson, AB (1985) Nutritional status of gastroenterology outpatients: comparison of inflammatory bowel disease with functional disorders. J Am Diet Assoc 85, 15911599.
Geerling, BJ, Badart-Smook, A, Stockbrugger, RW & Brummer, RJ (1998) Comprehensive nutritional status in patients with long-standing Crohn disease currently in remission. Am J Clin Nutr 67, 919926.
Gibney, MJ (1999) Dietary intake methods for estimating food additive intake. Regul Toxicol Pharmacol 30, S31S33.
Gibson, GR & Roberfroid, MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125, 14011412.
Hampe, J, Grebe, J & Nikolaus, S (2002) Association of NOD2 (CARD 15) genotype with clinical course of Crohn's disease: a cohort study. Lancet 359, 16611665.
Harper, PH, Lee, EC, Kettlewell, MG, Bennett, MK & Jewell, DP (1985) Role of the faecal stream in the maintenance of Crohn's colitis. Gut 26, 279284.
Holland, B, Welch, AA, Unwin, ID, Buss, DH, Paul, AA & Southgate, DAT (1991) McCance and Widdowson's The Composition of Foods 5th ed. London The Royal Society of Chemistry
Inohara, N, Ogura, Y & Fontalba, A (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J Biol Chem 278, 55095512.
Jarnerot, G, Jarnmark, I & Nilsson, K (1983) Consumption of refined sugar by patients with Crohn's disease, ulcerative colitis, or irritable bowel syndrome. Scand J Gastroenterol 18, 9991002.
Jukes, DJ (1997) Food Legislation of the UK: A Concise Guide 4th ed. Oxford: Butterworth-Heinemann.
Kasper, H & Sommer, H (1979) Dietary fibre and nutrient intake in Crohn's disease. Am J Clin Nutr 32, 18981901.
Katschinski, B, Logan, RF, Edmond, M & Langman, MJ (1988) Smoking and sugar intake are separate but interactive risk factors in Crohn's disease. Gut 29, 12021206.
Kovacsovics-Bankowski, M, Clark, K, Benacerraf, B & Rock, KL (1993) Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc Natl Acad Sci U S A 90, 49424946.
Lambe, J, Kearney, J, Becker, W, Hulshof, K, Dunne, A & Gibney, MJ (1998) Predicting percentage of individuals consuming foods from percentage of households purchasing foods to improve the use of household budget surveys in estimating food chemical intakes. Public Health Nutr 1, 239247.
Lawrie, CA & Rees, NM (1996) The approach adopted in the UK for the estimation of the intake of food additives. Food Addit Contam 13, 411416.
Lomer, MCE (2002) Dietary microparticles and Crohn's disease. PhD Thesis, University of London
Lomer, MCE, Harvey, RSJ, Evans, SM, Thompson, RPH & Powell, JJ (2001) Efficacy and tolerability of a low microparticle diet in a double blind, randomized, pilot study in Crohn's disease. Eur J Gastroenterol Hepatol 13, 101106.
Lomer, MCE, Kodjabashia, K, Hutchinson, C, Thompson, RPH & Powell, JJ (2004) Intake of dietary iron is low in patients with Crohn's disease: a case–control study. Br J Nutr 91, 141148.
Lomer, MCE, Thompson, RPH, Commisso, J, Keen, CL & Powell, JJ (2000) Determination of titanium dioxide in foods using inductively coupled plasma optical emission spectrometry. Analyst 125, 23392343.
Lomer, MCE, Thompson, RPH & Powell, JJ (2002) Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn's disease. Proc Nutr Soc 61, 123130.
Lowik, MR (1996) Possible use of food consumption surveys to estimate exposure to additives. Food Addit Contam 13, 427441.
Lund, EK, Wharf, SG, Fairweather-Tait, S & Johnson, IT (1999) Oral ferrous sulfate supplements increase the free radical-generating capacity of feces from healthy volunteers. Am J Clin Nutr 69, 250255.
Marr, JW & Heady, JA (1986) Within- and between-person variation in dietary surveys: number of days needed to classify individuals. Hum Nutr Appl Nutr 40, 347364.
Martini, GA & Brandes, JW (1976) Increased consumption of refined carbohydrates in patients with Crohn's disease. Klin Wochenschr 54, 367371.
Mayberry, JF, Rhodes, J, Allan, R, Newcombe, RG, Regan, GM, Chamberlain, LM & Wragg, KG (1981) Diet in Crohn's disease: two studies of current and previous habits in newly diagnosed patients. Dig Dis Sci 26, 444448.
Mingrone, G, Capristo, E, Greco, AV, Benedetti, G, De Gaetano, A, Tataranni, PA & Gasbarrini, G (1999) Elevated diet-induced thermogenesis and lipid oxidation rate in Crohn disease. Am J Clin Nutr 69, 325330.
Ministry of Agriculture, Fisheries and Food (1993) Dietary Intake of Food Additives in the UK: Initial Surveillance. Food Surveillance Paper no. 37 London: H.M. Stationery Office
Oostenbrug, LE, van Dullemen, HM, te Meerman, GJ, Jansen, PL (2003) IBD and genetics: new developments. Scand J Gastroenterol 239, Suppl.6368.
Powell, JJ, Ainley, CC, Harvey, RS, Mason, IM, Kendall, MD, Sankey, EA, Dhillon, AP & Thompson, RP (1996) Characterisation of inorganic microparticles in pigment cells of human gut associated lymphoid tissue. Gut 38, 390395.
Rayment, N, Mylonaki, M, Hudspith, B, Brostoff, J & Rampton, DS (2003) Co-localisation of Escherichia coli with macrophages in lamina propria in patients with active inflammatory bowel disease (IBD). Gut 52A13
Reid, I (1980) Social class, ethnicity, sex, and age in empirical research Social Class Differences in Britain; Life-chances & Lifestyles 2789 London Fontana Press
Reif, S, Klein, I, Lubin, F, Farbstein, M, Hallak, A & Gilat, T (1997) Pre-illness dietary factors in inflammatory bowel disease. Gut 40, 754760.
Rickards, L, Fox, K, Roberts, C, Fletcher, L & Goddard, E (2004) General Household Survey, Living in Britain, 2002 London H.M. Stationery Office
Samet, JM, Dominici, F, Curriero, FC, Coursac, I & Zeger, SL (2000) Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med 343, 17421749.
Shanahan, F (2002) Probiotics and inflammatory bowel disease: from fads and fantasy to facts and future. Br J Nutr 88, Suppl. 1S5S9.
Shepherd, NA, Crocker, PR, Smith, AP & Levison, DA (1987) Exogenous pigment in Peyer's patches. Hum Pathol 18, 5054.
Silkoff, K, Hallak, A, Yegena, L, Rozen, P, Mayberry, JF, Rhodes, J & Newcombe, RG (1980) Consumption of refined carbohydrate by patients with Crohn's disease in Tel-Aviv-Yafo. Postgrad Med J 56, 842846.
Sullivan, SN (1990) Hypothesis revisited: toothpaste and the cause of Crohn's disease. Lancet 336, 10961097.
Taylor, PD, Jugdaohsingh, R & Powell, JJ (1997) Soluble silica with high affinity for aluminium under physiological and natural conditions. J Am Chem Soc 119, 88528856.
Tragnone, A, Valpiani, D, Miglio, F, Elmi, G, Bazzocchi, G, Pipitone, E & Lanfranchi, GA (1995) Dietary habits as risk factors for inflammatory bowel disease. Eur J Gastroenterol Hepatol 7, 4751.
Urbanski, SJ, Arsenault, AL, Green, FH & Haber, G (1989) Pigment resembling atmospheric dust in Peyer's patches. Mod Pathol 2, 222226.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed