Skip to main content Accesibility Help
×
×
Home

Digestive development of the early-weaned pig: 2. Effect of level of food intake on digestive enzyme activity during the immediate post-weaning period

  • D. Kelly (a1), J. A. Smyth (a2) and K. J. Mccracken (a1) (a3)
Abstract

Gastric intubation was adopted as a means of comparing the effect of two feeding levels, continuous nutrient supply (C) and restricted nutrient supply (R), on the digestive development of pigs weaned at 14 d of age, during the first 5 d post-weaning. The absolute weights of the stomach and the pancreas were significantly greater (P < 0.001) in C compared with R pigs. The effect was not significant for pancreas weight when expressed per kg body-weight but was significant (P < 0.05) for stomach weight. The weights of the small intestine (SI), SI mucosa and total mucosal protein were significantly higher (P < 0.001) in C pigs but protein content per g mucosa was similar in the C and R groups. There was no significant effect of treatment on the activity of lactase (β-glucosidase; EC 3.2.1.23) or sucrase (sucrose-α-glucosidase; EC 3.2.1.48) irrespective of the basis of comparison used. The specific activity (μmol/min per g protein) of maltase (α-glucosidase; EC 3.2.1.20) and of glucoamylase (glucan-1,4-α-glucosidase; EC 3.2.1.3) were similar in C and R groups but activities of maltase (μmol/g mucosa) (P < 0.05), and maltase and glucoamylase (mol/d) (P < 0.01) were significantly higher in C pigs. Villous height and crypt depth were significantly greater in C pigs (P < 0.001 and P < 0.05 respectively). Enteroglucagon was significantly (P < 0.05) higher in C compared with R pigs. Xylose absorption and the digestibility of energy were not affected by treatment. Digestibility of dry matter, organic matter, crude protein (nitrogen x 6.25) and carbohydrate were significantly higher (P < 0.001, P < 0.01, P < 0.05 and P < 0.001 respectively) in R pigs compared with C pigs but the differences were small, ranging from 1.3 to 2.5 %. These results demonstrate that (1) nutrient intake in the weaned pig affects the anatomy, morphology and function of the gut, (2) there is considerable ‘spare capacity’ for digestion of cereal-based diets even in pigs weaned at 14 d of age, (3) measurements in vitro of digestive function are of limited value unless supported by information in vivo on absorption/digestibility.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Digestive development of the early-weaned pig
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Digestive development of the early-weaned pig
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Digestive development of the early-weaned pig
      Available formats
      ×
Copyright
References
Hide All
Bailey, C. B., Kitts, W. D. & Wood, A. J. (1956). The development of the digestive enzyme system of the pig during its pre-weaning phase of growth. Canadian Journal of Animal Science 36, 5158.
Buchanan, K. D. (1973). Studies on the pancreatic-enteric hormones. PhD Thesis, The Queen's University of Belfast.
Corring, T., Aumaitre, A. & Durand, G. (1978). Development of digestive enzymes in piglets from birth to 8 weeks. I. Pancreas and pancreatic enzymes. Nutrition and Metabolism 22, 231243.
Deren, J. J., Broitman, S. A. & Zamcheck, N. (1967). Effect of diet upon intestinal disaccharidases and disaccharide absorption. Journal of Clinical Investigation 46, 186195.
Hampson, D. J. (1983). Post-weaning changes in piglet small intestine in relation to growth check and diarrhoea. PhD Thesis, University of Bristol.
Hill, F. W. G., Kidder, D. E. & Frew, J. (1970). A xylose absorption test for the dog. Veterinary Research 87, 250255.
Howard, F. & Yudkin, J. (1963). Effect of dietary change upon the amylase and trypsin activities of the rat pancreas. British Journal of Nutrition 17, 281294.
Kelly, D., Green, J. A., O'Brien, J. J. & McCracken, K. J. (1984). Gavage feeding of early-weaned pigs to study the effect of diet on digestive development and changes in intestinal microflora. Proceedings of VIIIth International Pig Veterinary Society Congress, Ghent, p. 317 [Tensaert, M., Hoorens, J., Lampo, P. H., Onte, P. B., Coussement, W. and Debonck, P., editors]. Casinoplein, Ghent, Belgium: Faculty of Veterinary Medicine, State University of Ghent.
Kelly, D., Smyth, J. A. & McCracken, K. J. (1991). Digestive development of the early-weaned pig. I. Effect of continuous nutrient supply on the development of the digestive tract and on changes in digestive enzyme activity during the first week post-weaning. British Journal of Nutrition 65, 169180.
Kidder, D. E. & Manners, M. J. (1980). The level and distribution of carbohydrases in the small intestine mucosa of pigs from 3 weeks of age to maturity. British Journal of Nutrition 43, 141153.
McCracken, K. J. (1984). Effect of diet composition on digestive development of early-weaned pigs. Proceedings of the Nutrition Society 43, 109A.
McCracken, K. J., Eddie, S. M. & Walker, N. (1980). Effect of flaked maize in diets for early-weaned pigs on performance to 6 weeks of age. Animal Production 30, 8594.
McCracken, K. J. & Patterson, D. C. (1980). Utilization of skim milk based diets containing ground wheat by pigs weaned at 10 d. Record of Agricultural Research 28, 99102.
Manners, M. J. & Stevens, J. A. (1972). Changes from birth to maturity in the pattern of distribution of lactase and sucrase activity in the mucosa of the small intestine of pigs. British Journal of Nutrition 28, 113127.
Nir, I., Nitsan, Z. & Vax, A. (1973). The influence of force-feeding and of protein supplementation to the diet on the metabolisable energy of diets, digestibility of nutrients, nitrogen retention and digestive enzyme output in geese. Annals de Biologie Animale, Biochimie, Biophysique 13, 465479.
Nitsan, Z., Dror, Y., Nir, I. & Shapira, N. (1974). The effect of force-feeding on enzymes of the liver, kidney, pancreas and digestive trace of chicks. British Journal of Nutrition 32, 241247.
Rosensweig, N. S. & Herman, R. H. (1969). Diet and disaccharides. American Journal of Clinical Nutrition 22, 99102.
Shields, R. G., Ekstrom, K. E. & Mahan, D. C. (1980). Effect of weaning age and feeding method on digestive enzyme development in swine from birth to 10 weeks. Journal of Animal Science 50, 257265.
Smith, M. W. (1984). Effect of post-natal development and weaning upon the capacity of pig intestinal villi to transport alanine. Journal of Agricultural Science, Cambridge 102, 625633.
Smith, M. W., Miller, B. G., James, P. S. & Bourne, F. J. (1985). Effect of weaning on the structure and function of piglet small intestine. Proceedings of 3rd International Seminar on Digestive Physiology in the Pig, Copenhagen, pp. 7578 [Just, A., Jorgenson, H. and Fernandez, J. A., editors]. Landhusholdningsselkskabets Forlag: Trykt i Frederiksberg Bogtrykkeri.
Trinder, P. (1975). Micro-determination of xylose in plasma. Analyst 100, 1215.
Utlenthal, L. D. (1985). The gut hormone response to food. Proceedings of the Nutrition Society 44, 5361.
Widdowson, E. M. (1984). Milk and the newborn animal. Proceedings of the Nutrition Society 43, 87100.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed