Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T20:27:54.769Z Has data issue: false hasContentIssue false

Cholesterol-lowering effect of soyabean lecithin in normolipidaemic rats by stimulation of biliary lipid secretion

Published online by Cambridge University Press:  09 March 2007

Elisabeth Polichetti
Affiliation:
Inserm U130, France
Nicolas Diaconescu
Affiliation:
Inserm U130, France
Paulette Lechene De La Porte
Affiliation:
Inserm U130, France
Lina Malli
Affiliation:
Department of Nutrition, Canada
Henri Portugal
Affiliation:
Laboratoire Central, Hôpital Sainte Marguerite, 13009 Marseille, France
Anne-Marie Pauli
Affiliation:
Laboratoire Central, Hôpital Sainte Marguerite, 13009 Marseille, France
Huguette Lafond
Affiliation:
Inserm U130, France
Beatriz Tuchweber
Affiliation:
Department of Pharmacology, University of Montreal, Montreal, H3C 357, Canada
Ibrahim Yousef
Affiliation:
Department of Nutrition, Canada
Francoise Chanussot
Affiliation:
Inserm U130, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of the present study was to assess the role of the liver in the plasma-cholesterol-lowering effect of soyabean lecithin. Normolipidaemic rats were fed on lecithin-enriched or control diets with the same amount of protein. The lecithin diets contained 200 g/kg high-fat commercial semi-purified soyabean lecithin (230 g/kg total lipids as soyabean phosphatidylcholine) or 200 g/kg high-fat purified soyabean lecithin (930 g/kg total lipids as soyabean phosphatidylcholine). The control diets were a low-fat diet (40 g fat/kg) and a high-fat triacylglycerol-rich diet (200 g fat/kg). The high-fat diets were isoenergetic. The cholesterol-lowering effect of the lecithin-enriched diets was associated with significantly lower levels of plasma total- and HDL-cholesterol and significantly higher levels of bile phosphatidylcholine (PC), bile salts and cholesterol. These findings suggest that the liver plays a major role in the reduction of plasma cholesterol, the increased biliary lipid being provided by both HDL and the hepatic microsomal pools of PC and cholesterol.

Type
Cholesterol metabolism in rats
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Amic, J., Lairon, D. & Hauton, J. C. (1972). Technique de dosage automatique de l'orthophosphate de grande fiabilité (Automatic and accurate assay technique for orthophosphate). Clinica Chimica Acta 40, 107114.CrossRefGoogle Scholar
Aufenanger, J., Haux, P., Weber, U. & Kattermann, R. (1988). A specific method for the direct determination of lipoprotein cholesterol in electrophoretic patterns. Clinica Chimica Acta 177, 197208.CrossRefGoogle ScholarPubMed
Bravo, E. & Cantafora, A. (1990). Hepatic uptake and processing of free cholesterol from different lipoproteins with and without sodium taurocholate administration. An in vivo study in the rat. Biochimica et Biophysica Acta 1045, 7480.Google ScholarPubMed
Chanussot, F., Lafont, H., Hauton, J., Tuchweber, B. & Yousef, I. (1990). Studies on the origin of biliary phospholipid. Effect of dehydrocholic acid and cholic acid infusions on hepatic and biliary phospholipids. Biochemical Journal 270, 691695.CrossRefGoogle ScholarPubMed
Domingo, N., Amic, J. & Hanton, J. (1972). Dosage automatique des sels biliaires conjugués de la bile par la 3α-hydroxystéroïde déshydroénase (Automatic assay for conjugated bile salts in bile by an enzymic technique using 3α-hydroxysteroid dehydrogenase). Clinica Chimica Acta 31, 399404.CrossRefGoogle Scholar
Esnault-Dupuy, C., Chanussot, F., Lafont, H., Chabert, C. & Hauton, J. (1987). The relationship between HDL-, LDL-, liposomes-free cholesterol, biliary cholesterol and bile salts in the rat. Biochimie 69, 4552.CrossRefGoogle ScholarPubMed
Halloran, L. G., Schwartz, C. C., Vlahcevic, Z. R., Nisman, R. M. & Swell, L. (1978). Evidence for high-density lipoprotein free cholesterol as the primary precursor for bile-acid synthesis in man. Surgery 84, 17.Google ScholarPubMed
Huang, C., Chen, C. P., Wefler, V. & Raftery, A. (1961). A stable reagent for the Lieberman-Burchard reaction, application to rapid serum cholesterol determination. Analytical Chemistry 33, 14051407.CrossRefGoogle Scholar
Ide, T., Murata, M. & Sundda, Y. (1994). Triacylglycerol and fatty acid synthesis in hepatocytes in suspension isolated from rats fed soybean phospholipid. Bioscience, Biotechnology, and Biochemistry 58, 699702.CrossRefGoogle Scholar
Imaizumi, K., Sekihara, K. & Sugano, M. (1991). Hypocholesterolemic action of dietary phosphatidylethanolamine in rats sensitive to exogenous cholesterol. Journal of Nutritional Biochemistry 2, 251254.CrossRefGoogle Scholar
Iwata, T., Hoshi, S., Takehisa, F., Tsutsumi, K., Furukawa, Y. & Kimura, S. (1992). The effect of dietary safflower phospholipid and soybean phospholipid on plasma and liver lipids in rats fed a hypercholesterolemic diet. Journal of Nutritional Science and Vitaminology 38, 471479.CrossRefGoogle ScholarPubMed
Iwata, T., Kimura, Y., Tsutsumi, K., Furukawa, Y. & Kimura, S. (1993). The effect of various phospholipids on plasma lipoproteins and liver lipids in hypercholesterolemic rats. Journalof Nutritional Science and Vitaminology 39, 6371.CrossRefGoogle ScholarPubMed
Jimenez, M. A., Scarino, M. L., Vignolini, F. & Mengheri, E. (1990). Evidence that polyunsaturated lecithin induces a reduction in plasma cholesterol level and favorable changes in lipoprotein composition in hypercholesterolemic rats. Journal of Nutrition 120, 659667.CrossRefGoogle ScholarPubMed
Knuiman, J. T., Beynen, A. C. & Katan, M. B. (1989). Lecithin intake and serum cholesterol. American Journal of Clinical Nutrition 49, 266268.CrossRefGoogle ScholarPubMed
Lie, R. F., Schmitz, J. M., Pierre, K. J. & Gochman, N. (1976). Cholesterol oxidase-based determination by continuous flow analysis of total and free cholesterol in serum. Clinical Chemistry 22, 1627.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. F., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Luft, J. H. (1961). Improvements in epoxy resin embedding methods. Journal of Biophysical and Biochemical Cytology 9, 409.CrossRefGoogle ScholarPubMed
Martins, I. J., Lenzo, N. P. & Redgrave, T. G. (1989). Phosphatidylcholine metabolism after transfer from lipid emulsions injected intravenously in rats. Implications for high-density lipoprotein metabolism. Biochimica et Biophysica Acta 1005, 217224.CrossRefGoogle ScholarPubMed
Podrez, E. A., Kosykh, V. A., Lakeev, Y. V., Kosenkov, E. I., Mambetisaeva, E. T., Repin, V. S., Smirnov, V. N. & Miettinen, T. A. (1993). Bile acid and very low density lipoprotein production by cultured hepatocytes from hypo- or hyperresponsive rabbits fed cholesterol. Lipids 28, 709713.CrossRefGoogle ScholarPubMed
Portal, I., Clerc, T., Sbarra, V., Portugal, H., Pauli, A. M., Lafont, H., Tuchweber, B., Yousef, I. & Chanussot, F. (1993). Importance of high-density lipoprotein-phosphatidylcholine in secretion of phospholipid and cholesterol in bile. American Journal of Physiology 264, G1052Gl056.Google ScholarPubMed
Pownall, H. J., Hickson-Bick, D. & Massey, J. B. (1991). Effects of hydrophobicity on turnover of plasma high density lipoproteins labeled with phosphatidylcholine ethers in the rat. Journal of Lipid Research 32, 793800.CrossRefGoogle ScholarPubMed
Rioux, F., Perea, A., Yousef, I. M., Levy, E., Malli, L., Carrillo, M. C. & Tuchweber, B. (1994). Short-term feeding of a diet enriched in phospholipids increases bile formation and the bile acid transport maximum in rats. Biochimica et Biophysicci Acta 1214, 193202.CrossRefGoogle ScholarPubMed
Rivabene, R., Cantafora, A., Yan, C. C., Castellano, F., Bruscalupi, G. & Bravo, E. (1992). Effect of HDL1 infusion on biliary secretion in perfused rat liver. Bioscience Reports 12, 425432.CrossRefGoogle ScholarPubMed
Robins, S. J., Fasulo, J. M. & Patton, G. M. (1990). Effect of bile salt on phosphatidylcholine composition and secretion of hepatic high-density lipoproteins. American Journal of Physiology 259, G205G211.Google ScholarPubMed
Schwartz, C. C., Zech, L. A., Van den Broek, J. & Cooper, P. S. (1993). Cholesterol kinetics in subjects with bile fistula. Positive relationship between size of the bile acid precursor pool and bile acid synthetic rate. Journal of Clinical Investigation 91, 923938.CrossRefGoogle ScholarPubMed
Sottocasa, G. L., Kuylenstierna, B., Ernster, L. & Bergstrand, A. (1967). An electron transport system associated with the outer membrane of liver mitochondria. Journal of Cell Biology 32, 415438.CrossRefGoogle ScholarPubMed
Takdyama, M., Itoh, S., Nagasaki, T. & Tanimizu, I. (1977). A new enzymatic method for choline containing phospholipids. Clinica Chimica Acta 79, 9398.Google Scholar
Tijburg, L. B. M., Samborski, R. W. & Vance, D. E. (1991). Evidence that remodeling of the fatty acids of phosphatidylcholine is regulated in isolated rat hepatocytes and involves both the sn-1 and sn-2 positions. Biochimica et Biophysica Acta 1085, 184190.CrossRefGoogle ScholarPubMed
Tompkins, R. K. & Parkin, L. G. (1980). Effects of long-term ingestion of soya phospholipids on serum lipids in humans. American Journal of Surgery 140, 360364.CrossRefGoogle ScholarPubMed
Williams, K. J., Werth, V. P. & Wolf, J. A. (1984). Intravenously administered lecithin Iiposomes: a synthetic antiatherogenic lipid particle. Perspectives in Biology and Medicine 27, 417431.CrossRefGoogle ScholarPubMed
Yousef, I. M., Bloxham, D. L., Philipps, M. J. & Fisher, M. M. (1975). Liver cell plasma membrane lipids and the origin of biliary phospholipid. Canadian Journal of Biochemistry 53, 989997.CrossRefGoogle ScholarPubMed
Yousef, I. M., Mignault, D., Weber, A. M. & Tuchweber, B. (1990). Influence of dehydrocholic acid on the secretion of biliary phospholipid. Digestion 45, 4051.CrossRefGoogle Scholar
Yousef, I. M. & Tuchweber, B. (1984). Effect of lithocholic acid on cholesterol synthesis and transport in the rat liver. Biochimica et Biophysica Acta 796, 336344.CrossRefGoogle ScholarPubMed