Skip to main content Accessibility help
×
×
Home

Dietary calcium impairs tomato lycopene bioavailability in healthy humans

  • Patrick Borel (a1), C. Desmarchelier (a1), U. Dumont (a1), C. Halimi (a1), D. Lairon (a1), D. Page (a2), J. L. Sébédio (a3), C. Buisson (a3), C. Buffière (a3) and D. Rémond (a3)...

Abstract

Lycopene (LYC) bioavailability is relatively low and highly variable, because of the influence of several factors. Recent in vitro data have suggested that dietary Ca can impair LYC micellarisation, but there is no evidence whether this can lead to decreased LYC absorption efficiency in humans. Our objective was to assess whether a nutritional dose of Ca impairs dietary LYC bioavailability and to study the mechanism(s) involved. First, in a randomised, two-way cross-over study, ten healthy adults consumed either a test meal that provided 19-mg (all-E)-LYC from tomato paste or the same meal plus 500-mg calcium carbonate as a supplement. Plasma LYC concentration was measured at regular time intervals over 7 h postprandially. In a second approach, an in vitro digestion model was used to assess the effect of increasing Ca doses on LYC micellarisation and on the size and zeta potential of the mixed micelles produced during digestion of a complex food matrix. LYC bioavailability was diminished by 83 % following the addition of Ca in the test meal. In vitro, Ca affected neither LYC micellarisation nor mixed micelle size but it decreased the absolute value of their charge by 39 %. In conclusion, a nutritional dose of Ca can impair dietary LYC bioavailability in healthy humans. This inhibition could be due to the fact that Ca diminishes the electrical charge of micelles. These results call for a thorough assessment of the effects of Ca, or other divalent minerals, on the bioavailability of other carotenoids and lipophilic micronutrients.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary calcium impairs tomato lycopene bioavailability in healthy humans
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary calcium impairs tomato lycopene bioavailability in healthy humans
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary calcium impairs tomato lycopene bioavailability in healthy humans
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: P. Borel, email Patrick.Borel@univ-amu.fr

Footnotes

Hide All

P. Borel and C. Desmarchelier are joint first authors.

Footnotes

References

Hide All
1. Kristal, AR & Cohen, JH (2000) Invited commentary: tomatoes, lycopene, and prostate cancer. How strong is the evidence? Am J Epidemiol 151, 124127; discussion 128–130.
2. Kucuk, O, Sarkar, FH, Djuric, Z, et al. (2002) Effects of lycopene supplementation in patients with localized prostate cancer. Exp Biol Med (Maywood) 227, 881885.
3. Wertz, K, Siler, U & Goralczyk, R (2004) Lycopene: modes of action to promote prostate health. Arch Biochem Biophys 430, 127134.
4. Jian, L, Du, CJ, Lee, AH, et al. (2005) Do dietary lycopene and other carotenoids protect against prostate cancer? Int J Cancer 113, 10101014.
5. Graff, RE, Pettersson, A, Lis, RT, et al. (2016) Dietary lycopene intake and risk of prostate cancer defined by ERG protein expression. Am J Clin Nutr 103, 851860.
6. Wang, Y, Jacobs, EJ, Newton, CC, et al. (2016) Lycopene, tomato products and prostate cancer-specific mortality among men diagnosed with nonmetastatic prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Int J Cancer 138, 28462855.
7. Müller, L, Caris-Veyrat, C, Lowe, G, et al. (2015) Lycopene and its antioxidant role in the prevention of cardiovascular diseases – a critical review. Crit Rev Food Sci Nutr 56, 18681879.
8. Böhm, V (2012) Lycopene and heart health. Mol Nutr Food Res 56, 296303.
9. Mordente, A, Guantario, B, Meucci, E, et al. (2011) Lycopene and cardiovascular diseases: an update. Curr Med Chem 18, 11461163.
10. Moran, NE, Cichon, MJ, Riedl, KM, et al. (2015) Compartmental and noncompartmental modeling of 13C-lycopene absorption, isomerization, and distribution kinetics in healthy adults. Am J Clin Nutr 102, 14361449.
11. Cooperstone, JL, Ralston, RA, Riedl, KM, et al. (2015) Enhanced bioavailability of lycopene when consumed as cis-isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial. Mol Nutr Food Res 59, 658669.
12. Borel, P (2003) Factors affecting intestinal absorption of highly lipophilic food microconstituents (fat-soluble vitamins, carotenoids and phytosterols). Clin Chem Lab Med 41, 979994.
13. Reboul, E, Richelle, M, Perrot, E, et al. (2006) Bioaccessibility of carotenoids and vitamin E from their main dietary sources. J Agric Food Chem 54, 87498755.
14. Reboul, E, Borel, P, Mikail, C, et al. (2005) Enrichment of tomato paste with 6% tomato peel increases lycopene and beta-carotene bioavailability in men. J Nutr 135, 790794.
15. Borel, P, Desmarchelier, C, Nowicki, M, et al. (2015) Lycopene bioavailability is associated with a combination of genetic variants. Free Radic Biol Med 83, 238244.
16. Tyssandier, V, Reboul, E, Dumas, JF, et al. (2003) Processing of vegetable-born carotenoids in the human stomach and duodenum. Am J Physiol Gastrointest Liver Physiol 284, G913G923.
17. Tyssandier, V, Lyan, B & Borel, P (2001) Main factors governing the transfer of carotenoids from emulsion lipid droplets to micelles. Biochim Biophys Acta 1533, 285292.
18. Moussa, M, Landrier, JF, Reboul, E, et al. (2008) Lycopene absorption in human intestinal cells and in mice involves scavenger receptor class B type I but not Niemann-Pick C1-like 1. J Nutr 138, 14321436.
19. Moussa, M, Gouranton, E, Gleize, B, et al. (2011) CD36 is involved in lycopene and lutein uptake by adipocytes and adipose tissue cultures. Mol Nutr Food Res 55, 578584.
20. Reboul, E & Borel, P (2011) Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res 50, 388402.
21. Tyssandier, V, Cardinault, N, Caris-Veyrat, C, et al. (2002) Vegetable-borne lutein, lycopene, and beta-carotene compete for incorporation into chylomicrons, with no adverse effect on the medium-term (3-wk) plasma status of carotenoids in humans. Am J Clin Nutr 75, 526534.
22. Gleize, B, Tourniaire, F, Depezay, L, et al. (2013) Effect of type of TAG fatty acids on lutein and zeaxanthin bioavailability. Br J Nutr 110, 110.
23. Chappell, JE, Clandinin, MT, Kearney-Volpe, C, et al. (1986) Fatty acid balance studies in premature infants fed human milk or formula: effect of calcium supplementation. J Pediatr 108, 439447.
24. Corte-Real, J, Iddir, M, Soukoulis, C, et al. (2016) Effect of divalent minerals on the bioaccessibility of pure carotenoids and on physical properties of gastro-intestinal fluids. Food Chem 197, 546553.
25. Cardinault, N, Tyssandier, V, Grolier, P, et al. (2003) Comparison of the postprandial chylomicron carotenoid responses in young and older subjects. Eur J Nutr 42, 315323.
26. Richelle, M, Lambelet, P, Rytz, A, et al. (2012) The proportion of lycopene isomers in human plasma is modulated by lycopene isomer profile in the meal but not by lycopene preparation. Br J Nutr 107, 14821488.
27. Food and Nutrition Board (2011) Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Vitamins. Washington, DC: Food and Nutrition Board, Institute of Medicine, National Academy.
28. Page, D, Van Stratum, E, Degrou, A, et al. (2012) Kinetics of temperature increase during tomato processing modulate the bioaccessibility of lycopene. Food Chem 135, 24622469.
29. Gleize, B, Steib, M, Andre, M, et al. (2012) Simple and fast HPLC method for simultaneous determination of retinol, tocopherols, coenzyme Q10 and carotenoids in complex samples. Food Chem 134, 25602564.
30. Borel, P, Moussa, M, Reboul, E, et al. (2009) Human fasting plasma concentrations of vitamin E and carotenoids, and their association with genetic variants in apo C-III, cholesteryl ester transfer protein, hepatic lipase, intestinal fatty acid binding protein and microsomal triacylglycerol transfer protein. Br J Nutr 101, 680687.
31. Borel, P, Moussa, M, Reboul, E, et al. (2007) Human plasma levels of vitamin E and carotenoids are associated with genetic polymorphisms in genes involved in lipid metabolism. J Nutr 137, 26532659.
32. Graff, RE, Pettersson, A, Lis, RT, et al. (2016) Dietary lycopene intake and risk of prostate cancer defined by ERG protein expression. Am J Clin Nutr 103, 851860.
33. Aune, D, Navarro Rosenblatt, DA, Chan, DS, et al. (2015) Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am J Clin Nutr 101, 87117.
34. Butler, LM, Wong, AS, Koh, WP, et al. (2010) Calcium intake increases risk of prostate cancer among Singapore Chinese. Cancer Res 70, 49414948.
35. Wilson, KM, Shui, IM, Mucci, LA, et al. (2015) Calcium and phosphorus intake and prostate cancer risk: a 24-y follow-up study. Am J Clin Nutr 101, 173183.
36. Biehler, E, Hoffmann, L, Krause, E, et al. (2011) Divalent minerals decrease micellarization and uptake of carotenoids and digestion products into Caco-2 cells. J Nutr 141, 17691776.
37. Goncalves, A, Gontero, B, Nowicki, M, et al. (2015) Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops. J Lipid Res 56, 11231133.
38. Tsuruoka, H, Khovidhunkit, W, Brown, BE, et al. (2002) Scavenger receptor class B type I is expressed in cultured keratinocytes and epidermis. Regulation in response to changes in cholesterol homeostasis and barrier requirements. J Biol Chem 277, 29162922.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed