Skip to main content
×
×
Home

The role of dietary coconut for the prevention and treatment of Alzheimer's disease: potential mechanisms of action

  • W. M. A. D. B. Fernando (a1) (a2), Ian J. Martins (a1) (a2), K. G. Goozee (a1) (a2) (a3) (a4), Charles S. Brennan (a5), V. Jayasena (a6) and R. N. Martins (a1) (a2) (a3) (a4)...
Abstract

Coconut, Cocos nucifera L., is a tree that is cultivated to provide a large number of products, although it is mainly grown for its nutritional and medicinal values. Coconut oil, derived from the coconut fruit, has been recognised historically as containing high levels of saturated fat; however, closer scrutiny suggests that coconut should be regarded more favourably. Unlike most other dietary fats that are high in long-chain fatty acids, coconut oil comprises medium-chain fatty acids (MCFA). MCFA are unique in that they are easily absorbed and metabolised by the liver, and can be converted to ketones. Ketone bodies are an important alternative energy source in the brain, and may be beneficial to people developing or already with memory impairment, as in Alzheimer's disease (AD). Coconut is classified as a highly nutritious ‘functional food’. It is rich in dietary fibre, vitamins and minerals; however, notably, evidence is mounting to support the concept that coconut may be beneficial in the treatment of obesity, dyslipidaemia, elevated LDL, insulin resistance and hypertension – these are the risk factors for CVD and type 2 diabetes, and also for AD. In addition, phenolic compounds and hormones (cytokinins) found in coconut may assist in preventing the aggregation of amyloid-β peptide, potentially inhibiting a key step in the pathogenesis of AD. The purpose of the present review was to explore the literature related to coconut, outlining the known mechanistic physiology, and to discuss the potential role of coconut supplementation as a therapeutic option in the prevention and management of AD.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The role of dietary coconut for the prevention and treatment of Alzheimer's disease: potential mechanisms of action
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The role of dietary coconut for the prevention and treatment of Alzheimer's disease: potential mechanisms of action
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The role of dietary coconut for the prevention and treatment of Alzheimer's disease: potential mechanisms of action
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: Professor R. N. Martins, fax +61 8 93474299, email r.martins@ecu.edu.au
References
Hide All
1 Chetelat, G, Villemagne, VL, Bourgeat, P, et al. (2010) Relationship between atrophy and β-amyloid deposition in Alzheimer disease. Ann Neurol 67, 317324.
2 Villain, N, Chetelat, G, Grassiot, B, et al. (2012) Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer's disease: a voxelwise PiB-PET longitudinal study. Brain Res Bull 135, 21262139.
3 Marina, AM, Che Man, YB & Nazimah, AH (2009) Chemical properties of virgin coconut oil. J Am Oil Chem Soc 86, 301307.
4 Gopala, KAG, Gaurav, R, Ajit, SB, et al. (2010) Coconut oil: chemistry, production and its applications – a review. Indian Coconut J 73, 1527.
5 Lopes, MA & Larkins, BA (1993) Endosperm origin, development and function. Plant cell 5, 13831399.
6 Hahn, WJ (1997) Arecanae: the palms. In Tree of Life Web Project Website. http://tolweb.org/Arecanae/21337.
7 Pearsall, J (1999) Coconut Oxford Dictionary, 10th ed. Oxford: Clarendon Press.
8 Patrick, JW & Offler, CE (2001) Compartmentation of transport and transfer events in developing seeds. J Exp Bot 52, 551564.
9 Janick, J and Paull, RE (editors) (2008) The Encyclopedia of Fruit & Nuts. Wallingford: CAB International.
10 Royal Botanic Gardens (2014) Cocos nucifera L. In World Checklist of Selected Plant Families [Royal Botanic Gardens, editor]. Kew: Royal Botanic Gardens.
11 Bach, AC & Babayan, VK (1982) Medium chain triglycerides: an update. Am J Clin Nutr 36, 950962.
12 Chandrashekar, P, Lokesh, BR & Gopala, KAG (2010) Hypolipidemic effect of blends of coconut oil with soybean oil or sunflower oil in experimental rats. Food Chem 123, 728733.
13 Radenahmad, N, Vongvatcharanon, U, Withyachumnarnkul, B, et al. (2006) Serum levels of 17β-estradiol in ovariectomized rats fed young-coconut-juice and its effect on wound healing. Songklanagarind J Sci Technol 28, 897910.
14 Radenahmad, N, Saleh, F, Sawangjaroen, K, et al. (2011) Young coconut juice, a potential therapeutic agent that could significantly reduce some pathologies associated with Alzheimer's disease: novel findings. Br J Nutr 105, 738746.
15 Kumar, PD (1997) The role of coconut and coconut oil in coronary heart disease in Kerala, south India. Trop Doct 27, 215217.
16 Lindeberg, S & Lundh, B (1993) Apparent absence of stroke and ischaemic heart disease in a traditional Melanesian island: a clinical study in Kitava. J Intern Med 233, 269275.
17 Villarino, BJ, Dy, LM & Lizada, CC (2007) Descriptive sensory evaluation of virgin coconut oil and refined, bleached and deodorized coconut oil. LWT Food Sci Technol 40, 193199.
18 Dauqan, EMA, Sani, HA, Abdullah, A, et al. (2011) Fatty acids composition of four different vegetable oils (red palm olein, palm olein, corn oil and coconut oil) by gas chromatography. In 2nd International Conference on Chemistry and Chemical Engineering, 29–31 July 2011, Chengdu, China , pp. 3134.
19 Nevin, KG & Rajamohan, T (2004) Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation. Clin Biochem 37, 830835.
20 Scarmeas, N, Stern, Y, Tang, MX, et al. (2006) Mediterranean diet and risk for Alzheimer's disease. Ann Neurol 59, 912921.
21 Gu, Y, Luchsinger, JA, Stern, Y, et al. (2010) Mediterranean diet, inflammatory and metabolic biomarkers, and risk of Alzheimer's disease. J Alzheimers Dis 22, 483492.
22 Marina, AM, Man, YB, Nazimah, SA, et al. (2009) Antioxidant capacity and phenolic acids of virgin coconut oil. Int J Food Sci Nutr 60, 114123.
23 Müller, H, Lindman, AS, Blomfeldt, A, et al. (2003) A diet rich in coconut oil reduces diurnal postprandial variations in circulating plasminogen activator antigen and fasting lipoprotein (a) compared with a diet rich in unsaturated fat in women. J Nutr 133, 34223427.
24 Traul, KA, Driedger, A, Ingle, DL, et al. (2000) Review of the toxicologic properties of medium-chain triglycerides. Food Chem Toxicol 38, 7998.
25 Warner, K (2005) Effects on the flavor and oxidative stability of stripped soybean and sunflower oils with added pure tocopherols. J Agric Food Chem 53, 99069910.
26 Adam, SK, Das, S, Faizah, O, et al. (2009) Fresh soy oil protects against vascular changes in an estrogen-deficient rat model: an electron microscopy study. Clinics 64, 11131119.
27 Ruppin, DC & Middleton, WRJ (1980) Clinical use of medium chain triglycerides. Drugs 20, 216224.
28 Masson, CJ, Plat, J, Mensink, RP, et al. (2010) Fatty acid- and cholesterol transporter protein expression along the human intestinal tract. PLoS ONE 5, 110.
29 Mishkin, S, Stein, L, Gatmaitan, Z, et al. (1972) The binding of fatty acids to cytoplasmic proteins: binding to Z protein in liver and other tissues of the rat. Biochem Biophys Res Commun 47, 9971003.
30 Holt, PR (2007) Intestinal malabsorption in the elderly. Digest Dis 25, 144150.
31 Mandelbaum-Schmid, J (2004) Vitamin and mineral deficiencies harm one-third of the world's population. Bull World Health Organ 82, 230231.
32 McCann, JC & Ames, BN (2011) Adaptive dysfunction of selenoproteins from the perspective of the triage theory: why modest selenium deficiency may increase risk of diseases of aging. FASEB J 25, 17931814.
33 Ockner, RK, Manning, JA, Poppenhausen, RB, et al. (1972) A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium and other tissues. Science 177, 5658.
34 Tholstrup, T, Ehnholm, C, Jauhiainen, M, et al. (2004) Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities. Am J Clin Nutr 79, 564569.
35 Tsuji, H, Kasai, M, Takeuchi, H, et al. (2001) Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind, controlled trial in healthy men and women. J Nutr 131, 28532859.
36 Valdivieso, V (1972) Absorption of medium-chain triglycerides in animals with pancreatic atrophy. Am J Dig Dis 17, 129136.
37 Ippagunta, S, Hadenfeldt, TJ, Miner, JL, et al. (2011) Dietary conjugated linoleic acid induces lipolysis in adipose tissue of coconut oil-fed mice but not soy oil-fed mice. Lipids 46, 821830.
38 Agnew, IE & Holdsworth, CD (1971) The effect of fat on calcium absorption from a mixed meal in normal subjects, patients with malabsorptive disease, and patients with a partial gastrectomy. Gut 12, 973980.
39 Tantibhedhyangkul, P & Hashim, SA (1978) Medium-chain triglyceride feeding in premature infants: effects on calcium and magnesium absorption. Pediatrics 61, 537545.
40 Hamsi, MA, Othman, F, Das, S, et al. (2014) Effect of consumption of fresh and heated virgin coconut oil on the blood pressure and inflammatory biomarkers: an experimental study in Sprague Dawley rats. Alexandria J Med 51, 5363.
41 Leong, XF, Najib, MNM, Das, S, et al. (2009) Intake of repeatedly heated palm oil causes elevation in blood pressure with impaired vasorelaxation in rats. Tohoku J Exp Med 219, 7178.
42 Adam, SK, Das, S, Soelaiman, IN, et al. (2008) Consumption of repeatedly heated soy oil increases the serum parameters related to atherosclerosis in ovariectomized rats. Tohoku J Exp Med 215, 219226.
43 Paul, NB & Concetta, CD (2003) Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification. Microbiol Mol Biol Rev 67, 454472.
44 Hoppel, C (2003) The role of carnitine in normal and altered fatty acid metabolism. AM J Kidney Dis 41, S4S12.
45 Papamandjaris, AA, Macdougall, DE & Jones, PJH (1998) Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci 62, 12031221.
46 Dara, LD, Jessica, W, Hannah, B, et al. (2010) Role of vascular risk factors and vascular dysfunction in Alzheimer's disease. Mt Sinai J Med 77, 82102.
47 St-Onge, MP & Jones, PJ (2002) Physiological effects of medium-chain triglycerides: potential agents in the prevention of obesity. J Nutr 132, 329332.
48 Assuncao, ML, Ferreira, HS, dos Santos, AF, et al. (2009) Effects of dietary coconut oil on the biochemical and anthropometric profiles of women presenting abdominal obesity. Lipids 44, 593601.
49 Xue, C, Liu, Y, Wang, J, et al. (2009) Consumption of medium- and long-chain triacylglycerols decreases body fat and blood triglyceride in Chinese hypertriglyceridemic subjects. Eur J Clin Nutr 63, 879886.
50 Flatt, JP, Ravussin, E & Acheson, KJ (1985) Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances. J Clin Invest 76, 10191024.
51 Hill, JO, Peters, JC, Yang, D, et al. (1989) Thermogenesis in humans during overfeeding with medium-chain triglycerides. Metabolism 38, 641648.
52 Scalfi, L, Coltorti, A & Contaldo, F (1991) Postprandial thermogenesis in lean and obese subjects after meals supplemented with medium-chain and long-chain triglycerides. Am J Clin Nutr 53, 11301133.
53 Dulloo, AG, Fathi, M, Mensi, N, et al. (1996) Twenty-four-hour energy expenditure and urinary catecholamines of humans consuming low-to-moderate amounts of medium-chain triglycerides: a dose–response study in human respiratory chamber. Eur J Clin Nutr 50, 152158.
54 White, MD, Papamandjaris, AA & Jones, PJH (1999) Enhanced postprandial energy expenditure with medium-chain fatty acid feeding is attenuated after 14 d in premenopausal women. Am J Clin Nutr 69, 883889.
55 Noguchi, O, Takeuchi, H, Kubota, F, et al. (2002) Larger diet-induced thermogenesis and less body fat accumulation in rats fed medium-chain triacylglycerols than in those fed long-chain triacylglycerols. J Nutr Sci Vitaminol 48, 524529.
56 Kasai, M, Nosaka, N, Maki, H, et al. (2002) Comparison of diet-induced thermogenesis of foods containing medium versus long-chain triacylglycerols. J Nutr Sci Vitaminol 48, 536540.
57 Krotkiewski, M (2001) Value of VLCD supplementation with medium chain triglycerides. Int J Obes Relat Metab Disord 25, 13931400.
58 Baba, N, Bracco, EF & Hashim, SA (1982) Enhanced thermogenesis and diminished deposition of fat in response to overfeeding with diet containing medium chain triglyceride. Am J Clin Nutr 35, 678682.
59 Poppitt, SD, Strik, CM, MacGibbon, AKH, et al. (2010) Fatty acid chain length, postprandial satiety and food intake in lean men. Physiol Behav 101, 161167.
60 Li, JJ, Huang, CJ & Xie, D (2008) Anti-obesity effects of conjugated linoleic acid, docosahexaenoic acid, and eicosapentaenoic acid. Mol Nutr Food Res 52, 631645.
61 Vemuri, M, Kelley, DS, Mackey, BE, et al. (2007) Docosahexaenoic acid (DHA) but not eicosapentaenoic acid (EPA) prevents trans-10, cis-12 conjugated linoleic acid (CLA)-induced insulin resistance in mice. Metab Syndr Relat Disord 5, 315322.
62 Hasselbalch, SG, Knudsen, GM, Jakobsen, J, et al. (1994) Brain metabolism during short-term starvation in humans. J Cereb Blood Flow Metab 14, 125131.
63 Page, K, Williamson, A, Yu, N, et al. (2009) Medium-chain fatty acids improve cognitive function in intensively treated type 1 diabetic patients and support in vitro synaptic transmission during acute hypoglycemia. Diabetes 58, 12371244.
64 Morris, AA (2005) Cerebral ketone body metabolism. J Inherit Metab Dis 28, 109121.
65 Sumithran, P, Prendergas, LA, Delbridge, E, et al. (2013) Ketosis and appetite-mediating nutrients and hormones after weight loss. Eur J Clin Nutr 67, 759764.
66 Sato, K, Yoshihiro, K, Keon, CA, et al. (1995) Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J 9, 651658.
67 Serra, D, Casals, N, Asins, G, et al. (1993) Regulation of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase protein by starvation, fat feeding, and diabetes. Arch Biochem Biophys 307, 4045.
68 Freeman, JM & Kossoff, EH (2010) Ketosis and the ketogenic diet, 2010: advances in treating epilepsy and other disorders. Adv Pediatr 57, 315329.
69 Kashiwaya, Y, Takeshima, T, Mori, N, et al. (2000) d-β-Hydroxybutyrate protects neurons in models of Alzheimer's and Parkinson's disease. Proc Natl Acad Sci U S A 97, 54405444.
70 Rho, JM, Anderson, GD, Donevan, SD, et al. (2002) Acetoacetate, acetone, and dibenzylamine (a contaminant in l-(+)-β-hydroxybutyrate) exhibit direct anticonvulsant actions in vivo . Epilepsia 43, 358361.
71 Likhodii, SS, Serbanescu, I, Cortez, MA, et al. (2003) Anticonvulsant properties of acetone, a brain ketone elevated by the ketogenic diet. Ann Neurol 54, 219226.
72 Tieu, K, Perier, C, Caspersen, C, et al. (2003) d-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 112, 892901.
73 Freeman, J, Veggiotti, P, Lanzi, G, et al. (2006) The ketogenic diet: from molecular mechanisms to clinical effects. Epilepsy Res 68, 145180.
74 Imamura, K, Takeshima, T, Kashiwaya, Y, et al. (2006) d-β-Hydroxybutyrate protects dopaminergic SH-SY5Y cells in a rotenone model of Parkinson's disease. J Neurosci Res 84, 13761384.
75 Puchowicz, MA, Xu, K, Sun, X, et al. (2007) Diet-induced ketosis increases capillary density without altered blood flow in rat brain. Am J Physiol Endocrinol Metab 292, E1607E1615.
76 Kwiterovich, PO Jr, Vining, EP, Pyzik, P, et al. (2003) Effect of a high-fat ketogenic diet on plasma levels of lipids, lipoproteins, and apolipoproteins in children. JAMA 290, 912920.
77 Patel, A, Pyzik, PL, Turner, Z, et al. (2010) Long-term outcomes of children treated with the ketogenic diet in the past. Epilepsia 51, 12771282.
78 Klag, MJ, Ford, DE, Mead, LA, et al. (1993) Serum cholesterol in young men and subsequent cardiovascular disease. N Engl J Med 328, 313318.
79 Alexander, L, Rogovik, MD & Ran, DG (2010) Ketogenic diet for treatment of epilepsy. Can Fam Physician 56, 540542.
80 Liu, YM, Williams, S, Basualdo-Hammond, C, et al. (2003) A prospective study: growth and nutritional status of children treated with the ketogenic diet. J Am Diet Assoc 103, 707712.
81 Liu, YM (2008) Medium-chain triglyceride (MCT) ketogenic therapy. Epilepsia 49, 3336.
82 Steen, E, Terry, BM, Rivera, EJ, et al. (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease – is this type 3 diabetes? J Alzheimers Dis 7, 6380.
83 Mosconi, L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 32, 486510.
84 Barañano, KW & Hartman, AL (2008) The ketogenic diet: uses in epilepsy and other neurologic illnesses. Curr Treat Options Neurol 10, 410419.
85 Reger, MA, Henderson, ST, Hale, C, et al. (2004) Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging 25, 311314.
86 Newport, MT (2010) Caregiver reports following dietary intervention with medium chain fatty acids in 60 persons with dementia. In International Symposium of Dietary Interventions for Epilepsy and other Neurological Diseases, October 2010, Edinburgh, Scotland .
87 Henderson, ST, Vogel, JL, Barr, LJ, et al. (2009) Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer's disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond) 6, 31.
88 Castellani, RJ, Lee, HG, Zhu, X, et al. (2008) Alzheimer disease pathology as a host response. J Neuropathol Exp Neurol 67, 523531.
89 Pifferi, F, Tremblay, S, Croteau, E, et al. (2011) Mild experimental ketosis increases brain uptake of 11C-acetoacetate and 18F-fluorodeoxyglucose: a dual-tracer PET imaging study in rats. Nutr Neurosci 14, 5158.
90 Roy, M, Nugent, S, Tremblay-Mercier, J, et al. (2012) The ketogenic diet increases brain glucose and ketone uptake in aged rats: a dual tracer PET and volumetric MRI study. Brain Res 1488, 1423.
91 Nafar, F & Mearow, KM (2014) Coconut oil attenuates the effects of amyloid-β on cortical neurons in vitro . J Alzheimers Dis 39, 233237.
92 Van Der Auwera, I, Wera, S, Van Leuven, F, et al. (2005) A ketogenic diet reduces amyloid β 40 and 42 in a mouse model of Alzheimer's disease. Nutr Metab 2, 28.
93 Studzinski, CM, MacKay, WA, Beckett, TL, et al. (2008) Induction of ketosis may improve mitochondrial function and decrease steady-state amyloid-β precursor protein (APP) levels in the aged dog. Brain Res Bull 1226, 209217.
94 Kashiwaya, Y, Bergman, C, Lee, JH, et al. (2013) A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer's disease. Neurobiol Aging 34, 15301539.
95 Beckett, TL, Studzinski, CM, Keller, JN, et al. (2013) A ketogenic diet improves motor performance but does not affect β-amyloid levels in a mouse model of Alzheimer's disease. Brain Res 1505, 6167.
96 Dashti, HM, Mathew, TC, Khadada, M, et al. (2007) Beneficial effects of ketogenic diet in obese diabetic subjects. Mol Cell Biochem 302, 249256.
97 Westman, EC, Yancy, WS Jr, Mavropoulos, JC, et al. (2008) The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr Metab (Lond) 5, 36.
98 Paoli, A, Bianco, A, Grimaldi, KA, et al. (2013) Long term successful weight loss with a combination biphasic ketogenic Mediterranean diet and Mediterranean diet maintenance protocol. Nutrients 5, 52055217.
99 Morris, MC, Evans, DA, Bienias, JL, et al. (2003) Dietary fats and the risk of incident Alzheimer disease. Arch Neurol 60, 194200.
100 Freeman, JM, Vining, EPG, Pillas, DJ, et al. (1998) The efficacy of the ketogenic diet – 1998: a prospective evaluation of intervention in 150 children. Pediatrics 102, 13581363.
101 Hall, ED, Andrus, PK & Yonkers, PA (1993) Brain hydroxyl radical generation in acute experimental head injury. J Neurochem 60, 588594.
102 Kielb, S, Koo, HP, Bloom, DA, et al. (2000) Nephrolithiasis associated with the ketogenic diet. J Urol 164, 464466.
103 Hiraide, A, Katayama, M, Sugimoto, H, et al. (1991) Effect of 3-hydroxybutyrate on posttraumatic metabolism in man. Surgery 109, 176181.
104 Hasselbalch, SG, Madsen, PL, Hageman, LP, et al. (1996) Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia. Am J Physiol 270, E746E751.
105 Westerterp-Plantenga, MS, Nieuwenhuizen, A, Tome, D, et al. (2009) Dietary protein, weight loss, and weight maintenance. Ann Rev Nutr 29, 2141.
106 Skov, AR, Haulrik, N, Toubro, S, et al. (2002) Effect of protein intake on bone mineralization during weight loss: a 6-month trial. Obes Res 10, 432438.
107 Poplawski, MM, Mastaitis, JW, Isoda, F, et al. (2011) Reversal of diabetic nephropathy by a ketogenic diet. PLoS ONE 6, e18604.
108 Cahill, GF Jr (2006) Fuel metabolism in starvation. Ann Rev Nutr 26, 122.
109 Kim, DS, Park, SY & Kim, JY (2001) Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from βA (1–42) insult. Neurosci Lett 303, 5761.
110 Park, YS & Kim, DS (2002) Discovery of natural products from Curcuma longa that protect cells from β-amyloid insult: a drug discovery effort against Alzheimer's disease. J Nat Prod 65, 12271231.
111 Tepe, B, Sokmen, M, Sokmen, A, et al. (2005) Antimicrobial and antioxidative activity of the essential oil and various extracts of Cyclotrichium origanifolium (Labill.) Manden. & Scheng. J Food Eng 69, 335342.
112 Necula, M, Kayed, R, Milton, S, et al. (2007) Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct. J Biol Chem 282, 1031110324.
113 Shah, R (2013) The role of nutrition and diet in Alzheimer disease: a systematic review. J Am Med Dir Assoc 14, 398402.
114 Hirohata, M, Hasegawa, K, Tsutsumi-Yasuhara, S, et al. (2007) The anti-amyloidogenic effect is exerted against Alzheimer's β-amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure. Biochemistry 46, 18881889.
115 Murray, NJ, Williamson, MP, Lilley, TH, et al. (1994) Study of the interaction between salivary proline-rich proteins and a polyphenol by 1H-NMR spectroscopy. Eur J Biochem 219, 923935.
116 Richard, T, Verge, S, Berke, B, et al. (2001) NMR and simulated annealing investigations of bradykinin in presence of polyphenols. J Biomol Struct Dyn 18, 627637.
117 Savaskan, E, Olivieri, G, Meier, F, et al. (2003) Red wine ingredient resveratrol protects from β-amyloid neurotoxicity. Gerontology 49, 380383.
118 Bastianetto, S & Quirion, R (2004) Natural antioxidants and neurodegenerative diseases. Front Biosci 9, 34473452.
119 Krebs, MRH, Bromley, EHC & Donald, AMT (2005) The binding of thioflavin-T to amyloid fibrils: localization and implications. J Struct Biol 149, 3037.
120 Ono, K, Hasegawa, K, Naiki, H, et al. (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer's β-amyloid fibrils in vitro . J Neurosci Res 75, 742750.
121 Porat, Y, Abramowitz, A & Gazit, E (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67, 2737.
122 Wang, J, Ho, L, Zhao, W, et al. (2008) Grape-derived polyphenolics prevent Aβ oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer's disease. J Neurosci 28, 63886392.
123 Singh, M, Arseneault, M, Sanderson, T, et al. (2008) Challenges for research on polyphenols from foods in Alzheimer's disease: bioavailability, metabolism, and cellular and molecular mechanisms. J Agr Food Chem 56, 48554873.
124 Ono, K, Hirohata, M & Yamada, M (2005) Ferulic acid destabilizes preformed β-amyloid fibrils in vitro . Biochem Biophys Res Commun 336, 444449.
125 Zhao, ZH & Moghadasian, MH (2008) Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid. Food Chem 109, 691702.
126 Ono, K, Condron, MM, Ho, L, et al. (2008) Effects of grape seed-derived polyphenols on amyloid β-protein self-assembly and cytotoxicity. J Biol Chem 283, 3217632187.
127 Ji-Jing, Y, Jun-Sub, J, Taek-Keun, KM, et al. (2013) Protective effects of ferulic acid in amyloid precursor protein plus presenilin-1 transgenic mouse model of Alzheimer disease. Biol Pharm Bull 36, 140143.
128 Seema, J & Jayakumar, R (2012) Effect of phenolic compounds against Aβ aggregation and Aβ-induced toxicity in transgenic C. elegans . Neurochem Res 37, 4048.
129 McLaurin, J, Kierstead, ME, Brown, ME, et al. (2006) Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer. Nat Med 12, 801808.
130 Ji-Jing, Y, Jae-Young, C, Hee-Sung, K, et al. (2001) Protection against β-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol 133, 8996.
131 Konishi, Y, Hitomi, Y & Yoshioka, E (2004) Intestinal absorption of p-coumaric and gallic acids in rats after oral administration. J Agric Food Chem 52, 25272532.
132 Martins, IJ, Hone, E, Foster, JK, et al. (2006) Apolipoprotein E, cholesterol metabolism, diabetes and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Mol Psychiatr 11, 721736.
133 Martins, IJ, Berger, T, Sharman, MJ, et al. (2009) Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease. J Neurochem 111, 12751308.
134 Ali, AT, Ferris, WF, Naran, NH, et al. (2011) Insulin resistance in the control of body fat distribution: a new hypothesis. Horm Metab Res 43, 7780.
135 Fernández-Real, JM, López-Bermejo, A, Vendrell, J, et al. (2006) Burden of infection and insulin resistance in healthy middle-aged men. Diabetes Care 29, 10581064.
136 Behl, C, Davis, JB, Klier, FG, et al. (1994) Amyloid β peptide induces necrosis rather than apoptosis. Brain Res Bull 645, 253264.
137 Sircar, S & Kansra, U (1998) Choice of cooking oils – myths and realities. J Indian Med Assoc 96, 304307.
138 Kochikuzhyil, BM, Devi, K & Fattepur, SR (2010) Effect of saturated fatty acid-rich dietary vegetable oils on lipid profile, antioxidant enzymes and glucose tolerance in diabetic rats. Indian J Pharmacol 42, 142145.
139 Sun, H, Jiang, T, Wang, S, et al. (2013) The effect of LXRα, ChREBP and Elovl6 in liver and white adipose tissue on medium- and long-chain fatty acid diet-induced insulin resistance. Diabetes Res Clin Pract 102, 183192.
140 Montgomery, MK, Osborne, B, Brown, SH, et al. (2013) Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle. J Lipid Res 54, 33223333.
141 Liberato, MV, Nascimento, AS, Ayers, SD, et al. (2012) Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. PLOS ONE 7, e36297.
142 Marçal, AC, Camporez, JP, Lima-Salgado, TM, et al. (2013) Changes in food intake, metabolic parameters and insulin resistance are induced by an isoenergetic, medium-chain fatty acid diet and are associated with modifications in insulin signalling in isolated rat pancreatic islets. Br J Nutr 28, 21542165.
143 Sykes, G & Margaret, CH (1954) Phenol as the preservative in insulin injections. J Pharm Pharmacol 6, 552557.
144 Nomura, E, Kashiwada, A, Hosoda, A, et al. (2003) Synthesis of amide compounds of ferulic acid, and their stimulatory effects on insulin secretion in vitro . Bioorg Med Chem 11, 38073813.
145 Cox, C, Sutherland, W, Mann, J, et al. (1998) Effects of dietary coconut oil, butter and safflower oil on plasma lipids, lipoproteins and lathosterol levels. Eur J Clin Nutr 52, 650654.
146 Iwamoto, T, Watanabe, D, Umahara, T, et al. (2004) Dual inverse effects of lipoprotein(a) on the dementia process in Japanese late-onset Alzheimer's disease. Psychogeriatrics 4, 6471.
147 Matsuzaki, T, Sasaki, K, Hata, J, et al. (2011) Association of Alzheimer disease pathology with abnormal lipid metabolism: the Hisayama Study. Neurology 77, 10681075.
148 Eliasson, MC, Jansson, JH, Lindahl, B, et al. (2003) High levels of tissue plasminogen activator (tPA) antigen precede the development of type 2 diabetes in a longitudinal population study. The Northern Sweden MONICA Study. Cardiovasc Diabetol 22, 19.
149 Feranil, AB, Duazo, PL, Kuzawa, CW, et al. (2011) Coconut oil is associated with a beneficial lipid profile in pre-menopausal women in the Philippines. Asia Pac J Clin Nutr 20, 190195.
150 Siri-Tarino, PW, Sun, Q, Hu, FB, et al. (2010) Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr 91, 535546.
151 Tsai, Y-H, Park, S, Kovacic, J, et al. (1999) Mechanisms mediating lipoprotein responses to diets with medium-chain triglyceride and lauric acid. Lipids 34, 895905.
152 Cater, NB, Heller, HJ & Denke, MA (1997) Comparison of the effects of medium-chain triacylglycerols, palm oil, and high oleic acid sunflower oil on plasma triacylglycerol fatty acids and lipid and lipoprotein concentrations in humans. Am J Clin Nutr 65, 4145.
153 Ganji, V & Kies, CV (1996) Psyllium husk fiber supplementation to the diets rich in soybean or coconut oil: hypocholesterolemic effect in healthy humans. Int J Food Sci Nutr 47, 103110.
154 Hayatullina, Z, Norliza, M, Norazlina, M, et al. (2012) Virgin coconut oil supplementation prevents bone loss in osteoporosis rat model. Evid Based Complement Alternat Med 2012, 237236.
155 Isaacs, CE & Thormar, H (1990) Human Milk Lipids Inactivated Enveloped Viruses, Breastfeeding, Nutrition, Infection and Infant Growth in Developed and Emerging Countries. St John's Newfoundland: Arts Biomedical.
156 Seneviratnea, KN, HapuarachchIa, CD & Ekanayake, S (2009) Comparison of the phenolic-dependent antioxidant properties of coconut oil extracted under cold and hot conditions. Food Chem 114, 14441449.
157 Mahadevappa, S, Arunchand, R & Farhath, K (2011) Anti-diabetic effects of cold and hot extracted virgin coconut oil. J Diabetes Mellit 1, 118123.
158 Zlokovic, BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178201.
159 Pardridge, WM (2005) The blood–brain barrier and neurotherapeutics. NeuroRx 2, 12.
160 Laffel, L (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 15, 412426.
161 Wlaź, P, Socała, K, Nieoczym, D, et al. (2012) Anticonvulsant profile of caprylic acid, a main constituent of the medium-chain triglyceride (MCT) ketogenic diet, in mice. Neuropharmacology 62, 18821889.
162 Adams, W & Bralt, DE (1992) Young coconut water for home rehydration in children with mild gastroenteritis. Trop Geogr Med 44, 149153.
163 Letham, DS (1974) Regulators of cell division in plant tissues. XX. The cytokinins of coconut milk. Physiol Plant 32, 6670.
164 Huan, L, Takamura, T & Tanaka, M (2004) Callus formation and plant regeneration from callus through somatic embryo structures in Cymbidium orchid. Plant Sci 166, 14431449.
165 Choi, SJ, Jeong, CH, Choi, SG, et al. (2009) Zeatin prevents amyloid β-induced neurotoxicity and scopolamine-induced cognitive deficits. J Med Food 12, 271277.
166 Heo, HJ, Hong, SC, Cho, HY, et al. (2002) Inhibitory effect of zeatin, isolated from Fatoua villosa, on acetylcholinesterase activity from PC12 cells. Mol Cells 13, 113117.
167 Mirjana, , Danijela, ZK & Tamara, DL (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11, 315335.
168 Sandhya, VG & Rajamohan, T (2006) Beneficial effects of coconut water feeding on lipid metabolism in cholesterol-fed rats. J Med Food 9, 400407.
169 Alleyne, T, Roache, S, Thomas, C, et al. (2005) The control of hypertension by use of coconut water and mauby: two tropical food drinks. West Indian Med J 54, 38.
170 Chukwunonso, ECCE, Obioma, ON & Ifeoma, II (2010) Consumption of coconut milk did not increase cardiovascular disease risk in mice. Int J Curr Res 6, 063064.
171 Ekanayaka, RA, Ekanayaka, NK, Perera, B, et al. (2013) Impact of a traditional dietary supplement with coconut milk and soya milk on the lipid profile in normal free living subjects. J Nutr Metab 2013, 481068.
172 Trinidad, PT, Anacleta, SL, Aida, CM, et al. (2004) The cholesterol-lowering effect of coconut flakes in humans with moderately raised serum cholesterol. J Medi Food 7, 136140.
173 Ng, SP, Tan, CP, Lai, OM, et al. (2010) Extraction and characterization of dietary fiber from coconut residue. J Food Agric Environ 8, 172177.
174 Salil, G, Nevin, KG & Rajamohan, T (2011) Arginine rich coconut kernel protein modulates diabetes in alloxan treated rats. Chem Biol Interact 189, 107111.
175 Nwangwa, EK & Chukwuemeka, PA (2011) Regenerative effects of coconut water and coconut milk on the pancreatic β-cells and cyto architecture in alloxan induced diabetic Wistar Albino rat. Am J Trop Med Public Health 1, 137146.
176 Hoang, HH, Padgham, SV & Meininger, CJ (2013) l-Arginine, tetrahydrobiopterin, nitric oxide and diabetes. Curr Opin Clin Nutr Metab Care 16, 7682.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 2086
Total number of PDF views: 4824 *
Loading metrics...

Abstract views

Total abstract views: 9710 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st April 2018. This data will be updated every 24 hours.