Skip to main content Accessibility help
×
Home

The effect of bovine whey protein on ectopic bone formation in young growing rats

  • Owen Kelly (a1), Siobhan Cusack (a1) and Kevin D. Cashman (a1) (a2)

Abstract

The beneficial effect of bovine whey protein (WP) on bone metabolism has been shown in adult human subjects and ovariectomised rats. However, its effect on bone formation in earlier life, particularly during periods of bone mineral accrual, has not been investigated. Twenty-one male rats (4 weeks old, Wistar strain) were randomised by weight into three groups of seven rats each and fed ad libitum on a semi-purified low-Ca diet (3·0 g Ca/kg diet) containing 0 (control), 10 (diet WP1) or 20 (diet WP2) g bovine WP/kg for 47 d. On day 34 of the dietary intervention, all rats had two gelatine capsules containing demineralised bone powder implanted subcutaneously in the thorax region (a well-established in vivo model of ectopic bone formation). At 14 d after implantation, alkaline phosphatase activity (reflective of bone formation) in the bone implants from animals fed WP1 and -2 diets was almost 2-fold (P<0·01) that of control animals. Insulin-like growth factor (IGF)-I mRNA levels were about 3-fold (P<0·05) higher in implants from animals fed the WP diets compared with those from control animals. Serum- and urine-based biomarkers of bone metabolism and bone mineral composition in intact femora were unaffected by WP supplementation. In conclusion, the present findings suggest that bovine WP can enhance the rate of ectopic bone formation in young growing rats fed a Ca-restricted diet. This effect may be mediated by an increased synthesis of IGF-I in growing bone. The effect of WP on bone formation warrants further investigation.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The effect of bovine whey protein on ectopic bone formation in young growing rats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The effect of bovine whey protein on ectopic bone formation in young growing rats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The effect of bovine whey protein on ectopic bone formation in young growing rats
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author:Professor Kevin D. Cashman, fax +353 21 4270244, email k.cashman@ucc.ie

References

Hide All
Ammann, P, Laib, A, Bonjour, JP, Meyer, JM, Ruegsegger, P & Rizzoli, R (2002) Dietary essential amino acid supplements increase bone strength by influencing bone mass and bone microarchitecture in ovariectomized adult rats fed an isocaloric low-protein diet. J Bone Miner Res 17, 12641272.
Aoe, S, Toba, Y, Yamamura, J, et al. (2001) Controlled trial of the effects of milk basic protein (MBP) supplementation on bone metabolism in healthy adult women. Biosci Biotechnol Biochem 65, 913918.
Ballard, FJ, Nield, MK, Francis, GL, Dahlenburg, GW & Wallace, JC (1982) The relationship between the insulin content and inhibitory effects of bovine colostrum on protein breakdown in cultured cells. J Cell Physiol 110, 249254.
Calabresi, E, Lasagni, L, Franceschelli, F, Bartolini, L & Serio, M (1994) Use of an internal standard to measure pyridinoline and deoxypyridinoline in urine (letter). Clin Chem 40, 336337.
Colwell, R, Russell, RGG & Eastell, R (1993) Factors affecting the assay of urinary 3-hydroxypyridinium cross-links of collagen as markers of bone resorption. Eur J Clin Invest 23, 341349.
Cox, DA & Bürk, RR (1991) Isolation and characterisation of milk growth factor, a transforming-growth-factor-beta 2-related polypeptide, from bovine milk. Eur J Biochem 197, 353358.
Dallal, GE (1990) PC-Size consultant – A program for sample size determinations. Am Stat 44, 243.
DeSimone, DP & Reddi, AH (1983) Influence of vitamin A on matrix-induced endochondral bone formation. Calcif Tissue Int 35, 732739.
Fleet, JC, Cashman, K, Cox, K & Rosen, V (1996) The effects of aging on the bone inductive activity of recombinant human bone morphogenetic protein-2. Endocrinology 137, 46054610.
Fleet, JC & Hock, JM (1994) Identification of osteocalcin mRNA in nonosteoid tissue of rats and humans by reverse transcription–polymerase chain reaction. J Bone Miner Res 9, 15651573.
Francis, GL, Upton, FM, Ballard, FJ, McNeil, KA & Wallace, JC (1988) Insulin-like growth factors 1 and 2 in bovine colostrum. Sequences and biological activities compared with those of a potent truncated form. Biochem J 251, 95103.
Funaba, M, Kawashima, T, Yano, H & Kawashima, R (1990) Effects of a high protein diet on bone formation and calcium metabolism in rats. J Nutr Sci Vitaminol 36, 559567.
Hoshino, H, Kushida, K, Takahashi, M, Koyama, S, Yamauchi, H & Inoue, T (1998) Effects of low phosphate intake on bone and mineral metabolism in rats: evaluation by biochemical markers and pyridinium cross-link formation in bone. Ann Nutr Metab 42, 110118.
Ito, T (1991) Science of breast milk. New Food Industry 33, 7380.
Kalu, DN, Liu, CC, Salerno, E, Hollis, B, Echon, R & Ray, M (1991) Skeletal response of ovariectomized rats to low and high doses of 17 beta-estradiol. Bone Miner 14, 175187.
Kimura, T, Murakawa, Y, Ohno, M, Ohtani, S & Higaki, K (1997) Gastrointestinal absorption of recombinant human insulin-like growth factor-I in rats. J Pharmacol Exp Ther 283, 611618.
Lowry, OH, Rosebrough, NJ, Farr, AL & Randall, RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265275.
Matsui, T, Yano, H, Awano, T, Harumoto, T & Saito, Y (1994) The influences of casein phosphopeptides on metabolism of ectopic bone induced by decalcified bone matrix implantation in rats. J Nutr Sci Vitaminol 40, 137145.
Philipps, AF, Dvorak, B, Kling, PJ, Grille, JG & Koldovsky, O (2000) Absorption of milk-borne insulin-like growth factor-I into portal blood of suckling rats. J Pediatr Gastroenterol Nutr 31, 128135.
Philipps, AF, Kling, PJ, Grille, JG & Dvorak, B (2002) Intestinal transport of insulin-like growth factor-I (IGFI) in the suckling rat. J Pediatr Gastroenterol Nutr 35, 539544.
Porter, KH & Johnson, MA (1998) Dietary protein supplementation and recovery from femoral fracture. Nutr Rev 56, 337340.
Price, JS, Oyajobi, BO & Russell, RG (1994) The cell biology of bone growth. Eur J Clin Nutr 48, S131S149.
Reeves, PG, Nielsen, FH & Fahey, GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123, 19391951.
Robins, SP, Stead, DA & Duncan, A (1994) Precautions in using an internal standard to measure pyridinoline and deoxypyridinoline in urine (letter). Clin Chem 40, 23222323.
Rodan, GA & Rodan, SB (1995) The cells of bone. In Osteoporosis: Etiology, Diagnosis, and Management, 2nd ed. pp. 139 [Riggs, BL and Melton, LJ III, editors]. Philadelphia, PA: Lippincot-Raven.
Schurch, MA, Rizzoli, R, Slosman, D, Vadas, L, Vergnaud, P & Bonjour, JP (1998) Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 128, 801809.
Schwartz, R & Reddi, AH (1979) Influence of magnesium depletion on matrix-induced endochondral bone formation. Calcif Tissue Int 29, 1520.
Sinha, R, Smith, JC Jr & Soares, JH Jr (1988 a) Calcium and vitamin D in bone metabolism: analyses of their effects with a short-term in vivo bone model in rats. J Nutr 118, 99106.
Sinha, R, Smith, JC & Soares, JH (1988 b) The effect of dietary calcium on bone metabolism in young and aged female rats using a short-term in vivo model. J Nutr 118, 12171222.
Snedecor, GW & Cochran, WG (1967) Statistical Methods. Ames, IA: Iowa State University Press.
Takada, Y, Aoe, S & Kumegawa, M (1996) Whey protein stimulated the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun 223, 445449.
Takada, Y, Kobayashi, N, Kato, K, Matsuyama, H, Yahiro, M & Aoe, S (1997 a) Effects of whey protein on calcium and bone metabolism in ovariectomized rats. J Nutr Sci Vitaminol 43, 199210.
Takada, Y, Kobayashi, N, Matsuyama, H, et al. (1997 b) Whey protein suppresses the osteoclast-mediated bone resorption and osteoclast cell formation. Int Dairy J 7, 821825.
Takada, Y, Matsuyama, H, Kato, K, et al. (1997 c) Milk whey protein enhances the bone breaking force in ovariectomized rats. Nutr Res 17, 17091720.
Toba, Y, Takada, Y, Matsuoka, Y, et al. (2001) Milk basic protein promotes bone formation and suppresses bone resorption in healthy adult men. Biosci Biotechnol Biochem 65, 13531357.
Toba, Y, Takada, Y, Yamamura, J, et al. (2000) Milk basic protein: a novel protective function of milk against osteoporosis. Bone 27, 403408.
Weiss, RE, Gorn, A, Dux, S & Nimni, ME (1981) Influence of high protein diets on cartilage and bone formation in rats. J Nutr 111, 804816.
Weissman, N & Pileggi, VJ (1974) Inorganic ions. In Clinical Chemistry: Principles and Techniques, pp. 639755 [Henry,, RJ, Cannon, DC and Winkelman, JW, editors]. Hagers-town, MD: Harper and Row.
Yakar, S, Rosen, CJ, Beamer, WG, et al. (2002) Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 110, 771781.
Yamamura, J, Takada, Y, Goto, M, Kumegawa, M & Aoe, S (1999) High mobility group-like protein in bovine milk stimulates the proliferation of osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun 261, 113117.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed