Hostname: page-component-797576ffbb-tx785 Total loading time: 0 Render date: 2023-12-08T15:37:29.289Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

The effect of dietary protein and energy restriction on heat production and growth costs in the young rat

Published online by Cambridge University Press:  09 March 2007

Penny A. Coyer
Affiliation:
Nutrition Research Unit, Department of Human Nutrition, London School of Hygiene and Tropical Medicine, 4 St Pancras Way, London NW1 2PE
J. P. W. Rivers
Affiliation:
Nutrition Research Unit, Department of Human Nutrition, London School of Hygiene and Tropical Medicine, 4 St Pancras Way, London NW1 2PE
D. J. Millward
Affiliation:
Nutrition Research Unit, Department of Human Nutrition, London School of Hygiene and Tropical Medicine, 4 St Pancras Way, London NW1 2PE
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of dietary protein and energy restriction on heat production and growth costs has been examined in rats fed on a marginal (MP) or high (HP) protein diet, containing 9.2 % or 22 % respectively of the gross energy content as casein. Diets were given either ad fib. or at approximately 25, 50 or 75 % of the ad lib. intake.

2. Heat production (kJ/kg body-weight (W)0.75 per d) was increased by 23% in rats fed on the MP diet ad Lib., as compared with their HP controls (P < 0.01).

3. Factorial analysis of the data showed that the overall cost of energy deposition (kJ/kJ; Ee) was elevated on the MP diet (MP 1.7, HP 1.28; P < 0.001). Maintenance requirements (kJ/kg W0.75 per d) for zero energy balance were unchanged (MP 562, HP 573).

The partial energy cost of protein deposition (Ep) varied with dietary manipulation. If the partial energy cost of fat deposition (Ef) was assumed constant at 1.25 kJ/kJ, and maintenance requirements were assumed to vary with metabolic body size (W0.75), Ep was elevated on the MP diet. On both diets, Ep was reduced at low energy intakes.

5. The significance of these results is discussed in the context of current approaches to the analysis and interpretation of findings describing dietary induced changes in the rate of heat production.

Type
General Nutrition papers
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Agricultural Research Council/Medical Research Council (1975). Food and Nutrition Research, p. 30. London: H.M.S.O.Google Scholar
Agricultural Research Council (1981). The Nutritional Requirements of Pigs. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Armitage, P. (1971). Statistical Methods in Medical Research. Oxford and Edinburgh: Blackwell Scientific Publications.Google Scholar
Bailey, N. T. C. (1981). Statistical Methods in Biology, 2nd ed. London: Hodder and Stoughton.Google Scholar
Campbell, R. G. & Dunkin, A. C. (1983). British Journal of Nutrition 49, 221230.Google Scholar
Close, W. H., Bershauer, F. & Heavens, R. P. (1983). British Journal of Nutrition 49, 255269.Google Scholar
Cox, M. D., Dalal, S. S., Heard, C. R. C. & Millward, D. J. (1984). Journal of Nutrition 114, 16091616.Google Scholar
Coyer, P. A., Cox, M., Rivers, J. P. W. & Millward, D. J. (1984). Proceedings of the Nutrition Society 43, 75A.Google Scholar
Coyer, P. A., Rivers, J. P. W. & Millward, D. J. (1985 a). Proceedings of the Nutrition Society 44, 131A.Google Scholar
Coyer, P. A., Rivers, J. P. W. & Millward, D. J. (1985 b). British Journal of Nutrition 53, 491499.Google Scholar
Coyer, P. A., Donachie, P. D., Bates, P. C., Rivers, J. P. W. & Millward, D. J. (1986). Proceedings of the Nutrition Society 45, 108A.Google Scholar
Fattet, I., Hovel, F. D.DebØrskov, E. R., Kyle, D. J., Pennie, K. & Smart, R. I. (1984). British Journal of Nutrition 52, 561574.Google Scholar
Food and Agriculture Organization/World Health Organization/United Nations University (1985). Technical Report Series no. 724. Geneva: WHO.Google Scholar
Fowler, V. R., Fuller, M. F., Close, W. H. & Whittemore, C. T. (1979). In Energy Metabolism, European Association for Animal Production Publication no. 26, pp. 151157 [Mount, L. E., editor]. London: Butterworths.Google Scholar
Fuller, M. F. (1983). Journal of Nutrition 113, 1520.Google Scholar
Gurr, M. I., Mawson, R., Rothwell, N. J. & Stock, M. J. (1980). Journal of Nutrition 110, 532542.Google Scholar
Harris, P. M., Hodgson, D. F. & Broadhurst, R. B. (1984). British Journal of Nutrition 52, 289306.Google Scholar
Hervey, G. R. & Tobin, G. (1982). Proceedings of the Nutrition Society 41, 137153.Google Scholar
Holliday, M. A., Potter, D., Jarrah, A. & Beargh, S. (1967). Pediatric Research 1, 185195.Google Scholar
Holmes, C. W., Christensen, R.Carr, J. R. & Pearson, G. (1979). In Energy Metabolism, European Association for Animal Production Publication no. 26, pp. 97100 [Mount, L. E., editor]. London: Butterworths.Google Scholar
James, W. P. T. (1983). Lancet ii,386389.Google Scholar
Kielanowski, J. (1966). Animal Production 8, 121128.Google Scholar
Kielanowski, J. (1976). In Protein Metabolism and Nutrition, European Association for Animal Production Publication no. 16, pp. 207214 [Cole, D. J. A., Borrman, K. N., Buttery, P. J., Lewis, D., Neale, R. J. and Swan, H., editors]. LondonButterworths.Google Scholar
Kielanowski, J. & Kotarbinska, M. (1970). In Energy Metabolism of Farm Animals, European Association for Animal Production Publication no. 13, pp. 145148 [Schiürch, A. and Wenk, C., editors]. Zurich: Juris Druck and Verlag.Google Scholar
Kleiber, M. (1975). The Fire of Life, p. 268. New York: Kreiger.Google Scholar
Koong, L.-J., Neinaber, J. A., Pekas, J. C. & Yen, J.-T. (1982). Journal of Nutrition 112, 16381642.Google Scholar
Lindsay, D. B. (1976). In Protein Metabolism and Nutrition, European Association for Animal Production Publication no. 16, pp. 183195 [Cole, D. J. A., Boorman, K. N., Buttery, P. J., Lewis, D., Neale, R. J. and Swan, H., editors]. London: ButterworthsGoogle Scholar
Lunn, P. G. & Austin, S. (1983). Journal of Nutrition 113, 17911802.Google Scholar
Lunn, P. G. & Sawaya, A. L. (1985). British Journal of Nutrition 54, 322.Google Scholar
McCracken, K. J. (1975). British Journal of Nutrition 33, 277289.Google Scholar
McCracken, K. J. & Gray, R. (1976). Proceedings of the Nutrition Society 35, 59A.Google Scholar
McCracken, K. J. & McAllister, A. (1984). British Journal of Nutrition 51, 225234.Google Scholar
McCracken, K. J. & McNiven, M. A. (1983). British Journal of Nutrition 49, 193202.Google Scholar
McCracken, K. J. & Weatherup, S. T. C. (1973). Proceedings of the Nutrition Society 32, 66A.Google Scholar
Mcgilvery, R. W. (1970). Biochemistry: a Functional Approach. Philadelphia: W. B. Saunders.Google Scholar
McNiven, M. A. (1984). British Journal of Nutrition 51, 297304.Google Scholar
Miller, D. S. & Payne, P. R. (1959). British Journal of Nutrition 13, 501508.Google Scholar
Miller, D. S. & Payne, P. R. (1962). Journal of Nutrition 78, 255262.Google Scholar
Millward, D. J., Garlick, P. J., Stewart, R. J. C., Nnanyelugo, D. O. & Waterlow, J. C. (1975). Biochemical Journal 150, 235243.Google Scholar
Millward, D. J., Garlick, P. J. & Reeds, P. J. (1976). Proceedings of the Nutrition Society 35, 339349.Google Scholar
Mohan, P. F. & Narasinga Rao, B. S. (1983). Journal of Nutrition 113, 7985.Google Scholar
Puller, J. D. & Webster, A. J. F. (1974). British Journal of Nutrition 31, 377392.Google Scholar
Pullar, J. D. & Webster, A. J. F. (1977). British Journal of Nutrition 37, 355363.Google Scholar
Reeds, P. J., Fuller, M. J., Cadenhead, A., Lobley, G. E. & McDonald, J. D. (1980). British Journal of Nutrition 43, 445455.Google Scholar
Reeds, P. J. & Harris, C. I. (1980). In Nitrogen Metabolism in Man, pp. 391408 [Waterlow, J. C. and Stephen, J. M. L., editors]. London: Applied Science Publishers.Google Scholar
Roberts, S. & Coward, A. (1984). Journal of Nutrition 114, 21932200.Google Scholar
Rothwell, N. J. & Stock, M. J. (1983). Brown Adipose Tissue, Recent Advances in Physiology, vol. 10, p. 372. Edinburgh: Churchill Livingstone.Google Scholar
Rothwell, N. J., Stock, M. J. & Tyzbir, R. S. (1982). Journal of Nutrition 112, 16631672.Google Scholar
Rothwell, N. J., Stock, M. J. & Tyzbir, R. S. (1983). Metabolism 32, 257261.Google Scholar
Sawaya, A. L. & Lunn, P. G. (1985). British Journal of Nutrition 53, 175181.Google Scholar
Schiemann, R. (1970). Mathematitisch-Naturrwissenschafliche Reine 19, 3540.Google Scholar
Sundstol, F., Ekern, A. & Haugen, A. E. (1974). In Energy Metabolism of Farm Animals, European Association for Animal Production Publication no. 14, pp. 249251 [Menke, K. H., Lantzsch, H. J. and Reichl, J. R., editors]. Hohenheim: University of Hohenheim.Google Scholar
Swick, R. W. & Gribskov, C. J. (1983). Journal of Nutrition 113, 22892294.Google Scholar
Thorbek, G. (1975). Studies on Energy Metabolism in Growing Pigs 424. Copenhagen: Beretning fra Statens Husdryrbrugs forsog.Google Scholar
Toutain, P.-L., Toutain, C., Webster, A. J. F. & McDonald, J. D. (1977). British Journal of Nutrition 38, 445454.Google Scholar
Tulp, O., Krupp, P. P., Danforth, E. & Horton, E. S. (1979). Journal of Nutrition 109, 13211332.Google Scholar
Walker, D. M. & Norton, B. W. (1971). Journal of Agricultural Science, Cambridge 77, 363369.Google Scholar
Webster, A. J. F. (1983). Mammalian Thermogenesis, p. 193. London: Chapman and Hall.Google Scholar