Skip to main content
×
×
Home

The effect of different cooking methods on folate retention in various foods that are amongst the major contributors to folate intake in the UK diet

  • Derek J. McKillop (a1), Kristina Pentieva (a1), Donna Daly (a1), Joseph M. McPartlin (a1), Joan Hughes (a1), J. J. Strain (a1), John M. Scott (a1) and Helene McNulty (a1)...
Abstract

Folate intake is strongly influenced by various methods of cooking that can degrade the natural forms of the vitamin in foods. The aim of the present study was to determine the effect of different cooking methods on folate retention in various foods that contribute to folate intake in the UK diet. Typical purchasing and cooking practices of representative food folate sources were determined from a questionnaire survey of local shoppers (n 100). Total folate was determined by microbiological assay (Lactobacillus casei NCIMB 10463) following thermal extraction and tri-enzyme (α-amylase, protease and conjugase) treatment in raw foods and after typical methods of cooking. Boiling for typical time periods resulted in only 49 % retention of folate in spinach (191·8 and 94·4 μg/100 g for raw and boiled spinach respectively; P<0·005), and only 44 % in broccoli (177·1 and 77·0 μg/100 g for raw and boiled broccoli respectively, P<0·0001). Steaming of spinach or broccoli, in contrast, resulted in no significant decrease in folate content, even for the maximum steaming periods of 4·5 min (spinach) and 15·0 min (broccoli). Prolonged grilling of beef for the maximum period of 16·0 min did not result in a significant decrease in folate content (54·3 and 51·5 μg/100 g for raw and grilled beef respectively). Compared with raw values, boiling of whole potatoes (skin and flesh) for 60·0 min did not result in a significant change in folate content (125·1 and 102·8 μg/100 g for raw and boiled potato respectively), nor was there any effect on folate retention whether or not skin was retained during boiling. These current results show that the retention of folate in various foods is highly dependent both on the food in question and the method of cooking. Thus, public health efforts to increase folate intake in order to improve folate status should incorporate practical advice on cooking.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The effect of different cooking methods on folate retention in various foods that are amongst the major contributors to folate intake in the UK diet
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The effect of different cooking methods on folate retention in various foods that are amongst the major contributors to folate intake in the UK diet
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The effect of different cooking methods on folate retention in various foods that are amongst the major contributors to folate intake in the UK diet
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr Kristina Pentieva, fax +44 2870 324965, email k.pentieva@ulst.ac.uk
References
Hide All
Aramouni, FM & Godber, JS (1991) Folate losses in beef liver due to cooking and frozen storage. Journal of Food Quality 14, 357365.
Arthey, VD (1975) Quality of Horticultural Products. London: Butterworths.
Augustin, J, Johnson, SR, Teitzel, C, True, RH, Hogan, JM, Toma, RB, Shaw, RL & Deutsch, RM (1987) Changes in the nutrient composition of potatoes during home preparation II. American Potato Journal 55, 653662.
Ball, GFM (1998) Folate. In Bioavailability and Analysis of Vitamins in Foods, pp. 439496. London: Chapman and Hall.
Botto, LD, Moore, CA, Knotty, MJ & Erickson, JD (1999) Medical progress: neural tube defects. New England Journal of Medicine 20, 15091519.
Boushey, CJ, Beresford, SA, Omenn, GS & Motulsky, AG (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: Probable benefits of increasing folic acid intakes. Journal of the American Medical Association 274, 10491057.
Branda, RF & Blickenderfer, DB (1993) Folate deficiency increases genetic damage caused by alkylating agents in γ-irradiation in Chinese hamster ovary cells. Cancer Research 53, 54015408.
Chen, TS, Song, YO & Kirsch, AJ (1983) Effects of blanching, freezing and storage on folacin contents of spinach. Nutrition Reports International 28, 317321.
Choi, SW & Mason, JB (2000) Folate and carcinogenesis: An integrated scheme. Journal of Nutrition 130, 129132.
Czeizel, AE & Dudas, I (1992) Prevention of first occurrence of neural tube defects by periconceptional vitamin supplementation. New England Journal of Medicine 327, 18321835.
Daly, S, Molloy, A, Mills, JL, Conley, MR, Young, LJ, Kirke, PN, Weir, DG & Scott, JM (1997) Minimum effective dose of folic acid for food fortification to prevent neural tube defects. Lancet 350, 16661669.
Dang, J, Arcot, J & Shrestha, A (2000) Folate retention in selected processed legumes. Food Chemistry 68, 295298.
Department of Health (1992) Folic Acid and the Prevention of Neural Tube Defects. London: H. M. Stationery Office.
DeSouza, SC & Eitenmiller, RR (1986) Effects of processing and storage on the folate content of spinach and broccoli. Journal of Food Science 51, 626628.
Eitenmiller, RR & Landen, WO (1999) Folate. In Vitamin Analysis for the Health and Food Science, pp. 411465 [Eitenmiller, RR and Landen, WO, editors]. Boca Raton, FL: CRC Press.
Gregory, JF (1989) Chemical and nutritional aspects of folate research: analytical procedures, methods of folate synthesis, stability and bioavailability of dietary folates. In Advances in Food and Nutrition Research, pp. 1101 [Kinsella, JE, editor]. New York: Academic Press.
Gregory, JF (1996) Vitamins. In Food Chemistry, 3rd ed., pp. 531608 [Fennema, OR, editor]. New York: Marcel Dekker Inc.
Hawkes, JG & Villota, R (1989) Folates in foods: reactivity, stability during processing and nutritional implications. Critical Reviews in Food Science and Nutrition 28, 439538.
Holland, B, Welch, AA, Unwin, ID, Buss, DH, Paul, AA & Southgate, DAT (1991) McCance and Widdowson's The Composition of Foods, 5th ed. Cambridge: Royal Society of Chemistry and Ministry of Agriculture, Fisheries and Food.
Hurdle, ADF, Barton, D & Searles, IH (1968) A method for measuring folate in foods and its application to a hospital diet. American Journal of Clinical Nutrition 21, 12021207.
Jacob, RA, Gretz, DM, Taylor, PC, James, SJ, Pogribny, IP, Miller, BJ, Henning, SM & Swendseid, ME (1998) Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal woman. Journal of Nutrition 128, 12041214.
Keagy, PM (1985) Folacin: Microbiological and animal assays. In Methods of Vitamin Assay, 4th ed., pp. 445471 [Augustin, J, Klein, BP and Venugopal, PB, editors]. New York: John Wiley and Sons.
Kim, YI, Pogribny, IP, Basnakian, AG, Miller, JM, Selhub, J, James, SJ & Mason, JB (1997) Folate deficiency in rats induced DNA strand breaks and hypomethylation within the p53 tumour suppresser gene. American Journal of Clinical Nutrition 65, 4652.
Klein, BP (1989) Retention of nutrients in microwave-cooked foods. Boletin Asociacion Medica de Puerto Rico 81, 277279.
Leichter, J, Switzer, VP & Landymore, AF (1978) Effect of cooking on folate content of vegetables. Nutrition Reports International 18, 475479.
Lin, KC, Luh, BS & Schweigert, BS (1975) Folic acid content of canned garbanzo beans. Journal of Food Science 40, 562565.
Lund, D (1988) Effects of heat processing on nutrients. In Nutritional Evaluation of Food Processing, 3rd ed., pp. 319354 [Karmas, E and Harris, RS, editors]. New York: Van Nostrand Reinhold.
Ministry of Agriculture, Fisheries and Food (1994) The Dietary and Nutritional Survey of British Adults: Further Analysis. London: H. M. Stationery Office.
Malin, JD (1977) Total folate activity in Brussel sprouts: the effects of storage, processing, cooking and ascorbic content. Journal of Food Technology 12, 623632.
Medical Research Council Vitamin Study Research Group (1991) Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338, 131137.
Molloy, AM & Scott, JM (1997) Microbiological assay for serum, plasma and red cell folate using cryopreserved, microtiter plate method. Methods in Enzymology 281, 4353.
Murphy, M, Boyle, PHM, Weir, DG & Scott, JM (1978) The identification of the products of folate catabolism in the rat. British Journal of Haematology 38, 211218.
Murphy, M, Keating, M, Boyle, P, Weir, DG & Scott, JM (1976) The elucidation of the mechanism of folate catabolism in the rat. Biochemistry and Biophysics Research Communications 71, 10171024.
National Health and Medical Research Council (1993) Revised Statement on the Relationship Between Dietary Folic Acid and Neural Tube Defects Such As Spina Bifida, 115th session. Australia: National Health and Medical Research Council.
Public Health Service Centers for Disease Control and Prevention (1992) Recommendations for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. Morbidity and Mortality Weekly Report 41, 17.
Scott, JM (2001) Methyltetrahydrofolate: the superior alternative to folic acid. In Nutraceuticals in Health and Disease Prevention, pp. 7590 [Krämer, K, Hoppe, PP and Packer, L, editors]. New York: Marcel Dekker Inc.
Tamura, T (1998) Determination of food folate. Journal of Nutritional Biochemistry 9, 285293.
Vahteristo, LT, Lehikoinen, KE, Ollilainen, V, Koivistoinen, PE & Varo, P (1998) Oven-baking and frozen storage affect folate vitamin retention. Food Science and Technology-LEB 31, 329333.
Ward, M, McNulty, H, McPartlin, JM, Strain, JJ, Weir, DG & Scott, JM (1997) Plasma homocysteine, a risk factor for cardiovascular disease, is lowered by physiological doses of folic acid. Quarterly Journal of Medicine 90, 519524.
Wilson, SD & Horne, DW (1984) High-performance liquid chromatographic determination of the distribution of naturally occurring folic acid derivatives in rat liver. Analytical Biochemistry 142, 429535.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed