Skip to main content
×
×
Home

The effect of environmental temperature and humidity on 24 h energy expenditure in men

  • M. E. Valencia (a1), G. McNeill (a1), J. M. Brockway (a1) and J. S. Smith (a1)
Abstract

The effects of environmental temperature and humidity and their interaction on 24 h energy expenditure were measured using whole-body indirect calorimetry in eight normal-weight young men who wore standardized light clothing and followed a controlled activity regimen. A randomized-block experimental design was used, with temperature effects assessed by measurements at 20, 23, 26 and 30°, while humidity was altered from ambient (50–65% relative humidity) to high (80–93% relative humidity) at 20 and 30° only. There was no significant effect of humidity on 24 h energy expenditure at the two extreme temperatures in this range, though when periods of sleep and exercise were excluded the energy expenditure at high humidity was significantly higher than that at ambient humidity (P < 0.02). The effect of temperature at ambient humidity levels showed lower values at 23 and 26° than at 20 and 30° (P < 0.02). The effect of temperature was not equally apparent in all components of the 24 h energy expenditure, as sleeping metabolic rate and the energy cost of walking and cycling showed no significant effect of temperature over this range. This raises the possibility that the effects of temperature are attributable to behavioural changes during the waking portion of the day rather than any non-shivering thermogenic mechanisms at tissue level.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The effect of environmental temperature and humidity on 24 h energy expenditure in men
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The effect of environmental temperature and humidity on 24 h energy expenditure in men
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The effect of environmental temperature and humidity on 24 h energy expenditure in men
      Available formats
      ×
Copyright
References
Hide All
Blaxter, K. L. (1989). Energy Metabolism in Animals and Man. Cambridge: Cambridge University Press.
Blaza, S. & Garrow, J. S. (1983). Thermogenic response to temperature, exercise and food stimuli in lean and obese women, studied by 24 h direct calorimetry. British Journal of Nutrition 49, 171180.
Close, W. H. & Mount, L. E. (1978). The effects of plane of nutrition and environmental temperature on the energy metabolism of the growing pig. I. Heat loss and critical temperature. British Journal of Nutrition 40, 413421.
Consolazio, C. F., Konishi, F., Ciccolini, R. V., Jamison, J. M., Sheehan, E. J. & Steffen, W. P. (1960). Food consumption of military personnel performing light activities in a hot desert environment. Metabolism 9, 435442.
Consolazio, C. F., Shapiro, R., Masterton, J. E. & McKinzie, P. S. L. (1961). Energy requirements of men in extreme heat. Journal of Nutrition 73, 126134.
Dauncey, M. J. (1981). Influence of mild cold on 24 h energy expenditure, resting metabolism and diet-induced thermogenesis. British Journal of Nutrition 45, 257267.
Davies, R. H., Hassan, C. E. M. & Sykes, A. H. (1973). Energy utilization in the laying hen in relation to ambient temperature. Journal of Agricultural Science, Cambridge 80, 173177.
Durnin, J. V. G. A. & Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness. British Journal of Nutrition 32, 7797.
Food and Agriculture Organization/World Health Organization/United Nations University. (1985). Energy and protein requirements. Technical Report Series no. 724. Geneva: WHO.
Garby, L., Lammert, O. & Nielsen, E. (1986). Energy expenditure over 24 hours on low physical activity programmes in human subjects. Human Nutrition: Clinical Nutrition 40C, 141151.
Garby, L., Lammert, O. & Nielsen, E. (1990). Changes in energy expenditure of light physical activity during a 10 day period at 34°C environmental temperature. European Journal of Clinical Nutrition 44, 241244.
Lean, M. E. J., Murgatroyd, P. R., Rothnie, I., Reid, I. W. & Harvey, R. (1988). Metabolic and thyroidal responses to mild cold are abnormal in obese diabetic women. Clinical Endocrinology 28, 665673.
McLean, J. A. & Watts, P. R. (1976). Analytical refinements in animal calorimetry. Journal of Applied Physiology 55, 628634.
McNeill, G., Bruce, A. C., Ralph, A. & James, W. P. T. (1988). Inter-individual differences in fasting nutrient oxidation, and the influence of diet composition. International Journal of Obesity 12, 455463.
McNeill, G., McBride, A., Smith, J. S. & James, W. P. T. (1989). Energy expenditure in large and small eaters. Nutritional Research 9, 363372.
Nielsen, E. (1987). Acute modest changes in relative humidity do not affect energy expenditure at rest in human subjects. Human Nutrition: Clinical Nutrition 41C, 485488.
Quenouille, M. H., Boyne, A. W., Fisher, W. B. & Leitch, I. (1951). Statistical studies of recorded energy expenditure in man. Commonwealth Bureau of Animal Nutrition Technical Communication no. 17. Aberdeen.
Valencia, M. E., Maiorino, P. M. & Reid, B. L. (1980). Energy utilization of laying hens. II. Energetic efficiency and added tallow at 18.3°C and 35°C. Poultry Science 59, 9.
Warwick, P. M. & Busby, R. (1990). Influence of mild cold on 24 h energy expenditure in ‘normally’ clothed adults. British Journal of Nutrition 63, 481488.
Weir, J. B. de V. (1949). New methods of calculating metabolic rate, with special reference to protein metabolism. Journal of Physiology 109, 19.
Wenzel, H. G. (1978). Heat stress upon undressed man due to different combinations of elevated environmental temperature, air humidity, and metabolic heat production: a critical comparison of heat stress indices. Journal of Human Ergology 7, 185206.
Wilkerson, J. E., Raven, P. B. & Horvath, S. M. (1972). Critical temperature of unacclimatised male Caucasians. Journal of Applied Physiology 33, 451455.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed