Skip to main content Accessibility help
×
Home

The effect of lutein- and zeaxanthin-rich foods v. supplements on macular pigment level and serological markers of endothelial activation, inflammation and oxidation: pilot studies in healthy volunteers

  • Ryan Graydon (a1), Ruth E. Hogg (a2), Usha Chakravarthy (a2), Ian S. Young (a1) and Jayne V. Woodside (a1)...

Abstract

The aim of the present study was to compare the effect of lutein- and zeaxanthin-rich foods and supplements on macular pigment level (MPL) and serological markers of endothelial activation, inflammation and oxidation in healthy volunteers. We conducted two 8-week intervention studies. Study 1 (n 52) subjects were randomised to receive either carrot juice (a carotene-rich food) or spinach powder (a lutein- and zeaxanthin-rich food) for 8 weeks. Study 2 subjects (n 75) received supplements containing lutein and zeaxanthin, β-carotene, or placebo for 8 weeks in a randomised, double-blind, placebo-controlled trial. MPL, serum concentrations of lipid-soluble antioxidants, inter-cellular adhesion molecule 1, vascular cell adhesion molecule 1, C-reactive protein and F2-isoprostane levels were assessed at baseline and post-intervention in both studies. In these intervention studies, no effects on MPL or markers of endothelial activation, inflammation or oxidation were observed. However, the change in serum lutein and zeaxanthin was associated or tended to be associated with the change in MPL in those receiving lutein- and zeaxanthin-rich foods (lutein r 0·40, P = 0·05; zeaxanthin r 0·30, P = 0·14) or the lutein and zeaxanthin supplement (lutein r 0·43, P = 0·03; zeaxanthin r 0·22, P = 0·28). In both studies, the change in MPL was associated with baseline MPL (food study r − 0·54, P < 0·001; supplement study r − 0·40, P < 0·001). We conclude that this 8-week supplementation with lutein and zeaxanthin, whether as foods or as supplements, had no significant effect on MPL or serological markers of endothelial activation, inflammation and oxidation in healthy volunteers, but may improve MPL in the highest serum responders and in those with initially low MPL.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The effect of lutein- and zeaxanthin-rich foods v. supplements on macular pigment level and serological markers of endothelial activation, inflammation and oxidation: pilot studies in healthy volunteers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The effect of lutein- and zeaxanthin-rich foods v. supplements on macular pigment level and serological markers of endothelial activation, inflammation and oxidation: pilot studies in healthy volunteers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The effect of lutein- and zeaxanthin-rich foods v. supplements on macular pigment level and serological markers of endothelial activation, inflammation and oxidation: pilot studies in healthy volunteers
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr R. E. Hogg, fax +44 28 90632699, email r.e.hogg@qub.ac.uk

References

Hide All
1Evans, JR, Fletcher, AE & Wormald, RP (2004) Age-related macular degeneration causing visual impairment in people 75 years or older in Britain, an add-on study to the Medical Research Council Trial of Assessment and Management of Older People in the Community. Ophthalmology 111, 513517.
2Mares-Perlman, JA, Fisher, AI, Klein, R, et al. (2001) Lutein and zeaxanthin in the diet and serum and their relation to age-related maculopathy in the third national health and nutrition examination survey. Am J Epidemiol 153, 424432.
3van Leeuwen, R, Boekhoorn, S, Vingerling, JR, et al. (2005) Dietary intake of antioxidants and risk of age-related macular degeneration. JAMA 294, 31013107.
4Seddon, JM, Ajani, UA, Sperduto, RD, et al. (1994) Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case–Control Study Group. JAMA 272, 14131420.
5Snellen, EL, Verbeek, AL, Van Den Hoogen, GW, et al. (2002) Neovascular age-related macular degeneration and its relationship to antioxidant intake. Acta Ophthalmol Scand 80, 368371.
6Bernstein, PS, Zhao, DY, Wintch, SW, et al. (2002) Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmology 109, 17801787.
7AREDS Study Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss, AREDS report no. 8. Arch Ophthalmol 119, 14171436.
8Beatty, S, Murray, IJ, Henson, DB, et al. (2001) Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Invest Ophthalmol Vis Sci 42, 439446.
9Iannone, A, Rota, C, Bergamini, S, et al. (1998) Antioxidant activity of carotenoids, an electron-spin resonance study on beta-carotene and lutein interaction with free radicals generated in a chemical system. J Biochem Mol Toxicol 12, 299304.
10Bohm, V, Puspitasari-Nienaber, NL, Ferruzzi, MG, et al. (2002) Trolox equivalent antioxidant capacity of different geometrical isomers of alpha-carotene, beta-carotene, lycopene, and zeaxanthin. J Agric Food Chem 50, 221226.
11Klein, RJ, Zeiss, C, Chew, EY, et al. (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308, 385389.
12Gold, B, Merriam, JE, Zernant, J, et al. (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38, 458462.
13Maller, JB, Fagerness, JA, Reynolds, RC, et al. (2007) Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet 39, 12001201.
14Watzl, B, Kulling, SE, Moseneder, J, et al. (2005) A 4-wk intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, nonsmoking men. Am J Clin Nutr 82, 10521058.
15Erlinger, TP, Guallar, E, Miller, ER, et al. (2001) Relationship between systemic markers of inflammation and serum beta-carotene levels. Arch Intern Med 161, 19031908.
16Izumi-Nagai, K, Nagai, N, Ohgami, K, et al. (2007) Macular pigment lutein is antiinflammatory in preventing choroidal neovascularization. Arteriosclerosis Thromb Vasc Biol 27, 25552562.
17Sasaki, M, Ozawa, Y, Kurihara, T, et al. (2009) Neuroprotective effect of an antioxidant, lutein, during retinal inflammation. Investigative Ophthalmol Vis Sci 50, 14331439.
18LaRowe, TL, Mares, JA, Snodderly, DM, et al. (2008) Macular pigment density and age-related maculopathy in the Carotenoids in Age-Related Eye Disease Study. An ancillary study of the women's health initiative. Ophthalmology 115, 876e1883e1.
19Rimm, EB, Stampfer, MJ, Ascherio, A, et al. (1993) Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 328, 14501456.
20Stampfer, MJ, Hennekens, CH, Manson, JE, et al. (1993) Vitamin E consumption and the risk of coronary disease in women. N Engl J Med 328, 14441449.
21MRC/BHF Heart Protection Study Group (2002) MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals, a randomised placebo-controlled trial. Lancet 360, 2333.
22Zureik, M, Galan, P, Bertrais, S, et al. (2004) Effects of long-term daily low-dose supplementation with antioxidant vitamins and minerals on structure and function of large arteries. Arterioscler Thromb Vasc Biol 24, 14851491.
23Craft, NE (1992) Carotenoid reversed-phase high-performance liquid chromatography methods, reference compendium. Methods Enzymol 213, 185205.
24Hogg, RE, Anderson, RS, Stevenson, MR, et al. (2007) In vivo macular pigment measurements, a comparison of resonance Raman spectroscopy and heterochromatic flicker photometry. Br J Ophthalmol 91, 485490.
25Roberts, LJ & Morrow, JD (2000) Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28, 505513.
26Ciulla, TA, Curran-Celantano, J, Cooper, DA, et al. (2001) Macular pigment optical density in a midwestern sample. Ophthalmology 108, 730737.
27Broekmans, WM, Berendschot, TT, Klopping-Ketelaars, IA, et al. (2002) Macular pigment density in relation to serum and adipose tissue concentrations of lutein and serum concentrations of zeaxanthin. Am J Clin Nutr 76, 595603.
28Hammond, BR Jr & Caruso-Avery, M (2000) Macular pigment optical density in a Southwestern sample. Invest Ophthalmol Vis Sci 41, 14921497.
29Johnson, EJ, Hammond, BR, Yeum, KJ, et al. (2000) Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density. Am J Clin Nutr 71, 15551562.
30Hammond, BR Jr, Johnson, EJ, Russell, RM, et al. (1997) Dietary modification of human macular pigment density. Invest Ophthalmol Vis Sci 38, 17951801.
31Berendschot, TT, Goldbohm, RA, Klopping, WA, et al. (2000) Influence of lutein supplementation on macular pigment, assessed with two objective techniques. Invest Ophthalmol Vis Sci 41, 33223326.
32Aleman, TS, Cideciyan, AV, Windsor, EA, et al. (2007) Macular pigment and lutein supplementation in ABCA4-associated retinal degenerations. Invest Ophthalmol Vis Sci 48, 13191329.
33Bone, RA, Landrum, JT, Cao, Y, et al. (2007) Macular pigment response to a supplement containing meso-zeaxanthin, lutein and zeaxanthin. Nutr Metab (Lond) 4, 12.
34Bone, RA & Landrum, JT (2010) Dose-dependent response of serum lutein and macular pigment optical density to supplementation with lutein esters. Arch Biochem Biophys 504, 5055.
35Connolly, EE, Beatty, S, Thurnham, DI, et al. (2010) Augmentation of macular pigment following supplementation with all three macular carotenoids, an exploratory study. Curr Eye Res 35, 335351.
36Cardinault, N, Gorrand, JM, Tyssandier, V, et al. (2003) Short-term supplementation with lutein affects biomarkers of lutein status similarly in young and elderly subjects. Exp Gerontol 38, 573582.
37Beatty, S, van Kuijk, FJ & Chakravarthy, U (2008) Macular pigment and age-related macular degeneration, longitudinal data and better techniques of measurement are needed. Invest Ophthalmol Vis Sci 49, 843845.
38Bone, RA, Landrum, JT, Guerra, LH, et al. (2003) Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. J Nutr 133, 992998.
39Johnson, EJ, Chung, HY, Caldarella, SM, et al. (2008) The influence of supplemental lutein and docosahexaenoic acid on serum, lipoproteins, and macular pigmentation. Am J Clin Nutr 87, 15211529.
40Trieschmann, M, Beatty, S, Nolan, JM, et al. (2007) Changes in macular pigment optical density and serum concentrations of its constituent carotenoids following supplemental lutein and zeaxanthin, the LUNA study. Exp Eye Res 84, 718728.
41Aleman, TS, Duncan, JL, Bieber, ML, et al. (2001) Macular pigment and lutein supplementation in retinitis pigmentosa and Usher syndrome. Invest Ophthalmol Vis Sci 42, 18731881.
42Wenzel, AJ, Gerweck, C, Barbato, D, et al. (2006) A 12-wk egg intervention increases serum zeaxanthin and macular pigment optical density in women. J Nutr 136, 25682573.
43Wenzel, AJ, Sheehan, JP, Gerweck, C, et al. (2007) Macular pigment optical density at four retinal loci during 120 days of lutein supplementation. Ophthalmic Physiol Opt 27, 329335.
44Lopez-Garcia, E, Schulze, MB, Fung, TT, et al. (2004) Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr 80, 10291035.
45Seddon, JM, Gensler, G, Klein, ML, et al. (2006) C-reactive protein and homocysteine are associated with dietary and behavioral risk factors for age-related macular degeneration. Nutrition 22, 441443.
46Vine, AK, Stader, J, Branham, K, et al. (2005) Biomarkers of cardiovascular disease as risk factors for age-related macular degeneration. Ophthalmology 112, 20762080.
47Thompson, HJ, Heimendinger, J, Haegele, A, et al. (1999) Effect of increased vegetable and fruit consumption on markers of oxidative cellular damage. Carcinogenesis 20, 22612266.
48Thompson, HJ, Heimendinger, J, Gillette, C, et al. (2005) In vivo investigation of changes in biomarkers of oxidative stress induced by plant food rich diets. J Agric Food Chem 53, 61266132.
49Nelson, JL, Bernstein, PS, Schmidt, MC, et al. (2003) Dietary modification and moderate antioxidant supplementation differentially affect serum carotenoids, antioxidant levels and markers of oxidative stress in older humans. J Nutr 133, 31173123.
50Thompson, HJ, Heimendinger, J, Sedlacek, S, et al. (2005) 8-Isoprostane F2alpha excretion is reduced in women by increased vegetable and fruit intake. Am J Clin Nutr 82, 768776.
51Riso, P, Visioli, F, Grande, S, et al. (2006) Effect of a tomato-based drink on markers of inflammation, immunomodulation, and oxidative stress. J Agric Food Chem 54, 25632566.
52Kiokias, S & Gordon, MH (2003) Dietary supplementation with a natural carotenoid mixture decreases oxidative stress. Eur J Clin Nutr 57, 11351140.
53O'Reilly, JD, Mallet, AI, McAnlis, GT, et al. (2001) Consumption of flavonoids in onions and black tea, lack of effect on F2-isoprostanes and autoantibodies to oxidized LDL in healthy humans. Am J Clin Nutr 73, 10401044.
54Jacob, RA, Aiello, GM, Stephensen, CB, et al. (2003) Moderate antioxidant supplementation has no effect on biomarkers of oxidant damage in healthy men with low fruit and vegetable intakes. J Nutr 133, 740743.

Keywords

The effect of lutein- and zeaxanthin-rich foods v. supplements on macular pigment level and serological markers of endothelial activation, inflammation and oxidation: pilot studies in healthy volunteers

  • Ryan Graydon (a1), Ruth E. Hogg (a2), Usha Chakravarthy (a2), Ian S. Young (a1) and Jayne V. Woodside (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed