Skip to main content Accessibility help
×
×
Home

Effect of Theobroma cacao flavonoids on immune activation of a lymphoid cell line

  • Emma Ramiro (a1), Àngels Franch (a1), Cristina Castellote (a1), Cristina Andrés-Lacueva (a2), Maria Izquierdo-Pulido (a2) and Margarida Castell (a1)...

Abstract

We analysed the effect of (−)-epicatechin and cocoa extract on the activation of a lymphoid cell line. Particularly the expression of IL-2 receptor α (IL-2Rα or CD25) and, the secretion of IL-2 and IL-4 were established after flavonoid treatment. Two media culture conditions (1 and 10 % of fetal calf serum supplementation) and the different moments of flavonoid addition (simultaneously or 2 h before cell-activation) were compared. IL-2Rα (CD25) expression on activated cells was significantly reduced by epicatechin and cocoa extract in a dose-dependent manner, achieving the highest inhibition of about 50 % when flavonoids were added 2 h before stimulation. IL-2 secretion was also inhibited by the presence of both epicatechin and cocoa extract, displaying 60 and 75 % of inhibition, respectively. Cocoa flavonoids were also able to enhance 3–4·5-fold IL-4 release. In summary, cocoa extract down-modulated T lymphocyte activation and therefore the acquired immune response. This fact could be important in some states of the immune system hyperactivity such as autoimmune or chronic inflammatory diseases.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of Theobroma cacao flavonoids on immune activation of a lymphoid cell line
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of Theobroma cacao flavonoids on immune activation of a lymphoid cell line
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of Theobroma cacao flavonoids on immune activation of a lymphoid cell line
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Margarida Castell, fax +34 93 403 59 01, email margaridacastell@ub.edu

References

Hide All
Alileche, A, Goldman, CK & Waldman, TA (2001) Differential effects of IL-2 and IL-15 on expression of IL-2 receptor α. Biochem Biophys Res Commun 285, 13021308.
Allen, JB, Wong, HL, Costa, GL, Bienkowski, MJ & Wahl, SM (1993) Suppression of monocyte function and differential regulation of IL-1 and Il-1ra by IL-4 contribute to resolution of experimental arthritis. J Immunol 151, 43444351.
Andrés-Lacueva, C, Lamuela-Raventós, RM, Jáuregui, O, Casals, I, Izquierdo-Pulido, M & Permanyer, J (2000) An LC method for the analysis of cocoa phenolics. LC-GC Europe 12, 902905.
Arts, ICW, Hollman, PCH & Kromhout, D (1999) Chocolate as a source of tea flavonoids. Lancet 354, 488.
Atluru, D, Jackson, TM & Atluru, S (1991) Genistein, a selective protein tyrosine kinase inhibitor, inhibits interleukin-2 and leukotriene B4 production from human mononuclear cells. Clin Immunol Immunopathol 59, 379387.
Baba, S, Osakabe, N, Yasuba, A, Natsume, M, Takizawa, T, Nakamura, T & Terao, J (2000) Bioavailability of (2)-epicatechin upon intake of chocolate and cocoa in human volunteers. Free Radic Res 33, 635641.
Bell, JR, Donovan, JL, Wong, R, Waterhouse, AL, German, JB, Walzem, RL & Kasim-Karakas, SE (2000) (+)-Catechin in human plasma after ingestion of a single serving of reconstituted red wine. Am J Clin Nutr 71, 103108.
Cerqueira, FCordeiro-da-Silva, AAraujo, N, Cidade, H, Kijjoa, A & Nascimento, MS (2003) Inhibition of lymphocyte proliferation by prenylated flavones: artelastin as a potent inhibitor. Life Sci 73, 23212334.
Cho, KJ, Yun, CH, Packer, L & Chung, AS (2001) Inhibition mechanisms of biflavonoids extracted from the bark of Pinus maritima on the expression of proinflamatory cytokines. Ann N Y Acad Sci 928, 141156.
Constant, SL & Bottomly, K (1997) Induction of Th1 and Th2 CD4 + responses: the alternative approaches. Annu Rev Immunol 15, 297322.
Depper, JM, Leonard, WJ, Drogula, C, Kronke, M, Waldman, TA & Greene, WC (1985) Interleukin 2 (IL-2) augments transcription of the IL-2 receptor gene. Proc Natl Acad Sci U S A 82, 42304234.
Dillinger, TL, Barriga, PEscárcega, SJimenez, MSalazar, Lowe D & Grivett, LE (2000) Food for goods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J Nutr 130, 2057S2072S.
Dornand, J, Bouaboulia, MDupuy, d'angeac A, Favero, J, Shire, D & Casellas, P (1992) Contrasting effects of the protein kinase C inhibitor staurosporine on the interleukin-1 and phorbol ester activation pathways in the EL4-6.1 thymoma cell line. J Cell Physiol 151, 7180.
Field, CJ (2000) Use of T cell function to determine the effect of physiologically active food components. Am J Clin Nutr 71, 170S175S.
Ghoreschi, K, Thomas, P, Breit, S, et al. (2003) Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat Med 9, 4046.
Greene, WC & Leonard, WJ (1986) The human interleukin-2 receptor. Annu Rev Immunol 4, 6996.
Hammerstone, JF, Lazarus, S, Mitchell, A, Rucker, R & Schmitz, HH (1999) Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using high-performance liquid chromatography/mass spectrometry. J Agric Food Chem 47, 490496.
Hatakeyama, M & Taniguchi, T (1990) Interleukin-2. In Handbook of Experimental Pharmacology, vol. 95/I; Peptide Growth Factors and their Receptors, pp. 523540. [Spron, MB and Roberts, AB, editors] Berlin: Heidelberg: Springer-Verlag.
Holt, RR, Lazarus, SA, Sullards, MC, Zhu, QY, Schramm, DD, Hammerstone, JF, Fraga, CG, Schmitz, HH & Keen, CL (2002) Procyanidin dimer B2 (epicatechin-(4β-8)-epicatechin) in human plasma after the consumption of a flavanol-rich cocoa. Am J Clin Nutr 76, 798804.
Hurst, WJ, Tarka, SM, Powis, TG, Valdez, F & Hester, TR (2002) Cacao usage by earliest Maya civilization. Nature 418, 289.
Johnson, VJ, He, Q, Osuchowski, MF & Sharma, RP (2003) Physiological responses of a natural antioxidant flavonoid mixture, silymarin, in BALB/c mice: III. Silymarin inhibits T-lymphocyte function at low doses but stimulates inflammatory processes at high doses. Planta Med 69, 4449.
Kelly, DS & Bendich, A (1996) Essential nutrients and immunologic functions. Am J Clin Nutr 63, 994S996S.
Kris-Etherton, PM & Keen, CL (2002) Evidence that the antioxidant flavonoids in tea and cocoa are beneficial for cardiovascular health. Curr Opin Lipidol 13, 4149.
Kubena, KS & McMurray, DN (1996) Nutrition and the immune system: a review of nutrient-nutrient interactions. J Am Diet Assoc 96, 11561164.
Kunishiro, K, Tai, A & Yamamoto, I (2001) Effects of rooibos tea extract on antigen-specific antibody production and cytokine generation in vitro and in vivo. Biosci Biotechnol Biochem 65, 21372145.
Lamuela, RM, Andrés-Lacueva, C, Permanyer, J & Izquierdo-Pulido, M (2001) More antioxidants in cocoa. J Nutr 131, 834.
Mackenzie, GG, Carrasquedo, F, Delfino, JM, Keen, CL, Fraga, CG & Oteiza, PI (2004) Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-κB activation at multiple steps in Jurkat T cells. FASEB J 18, 167169.
Manach, C, Scalbert, A, Morand, C, Rémésy, CJiménez, L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79, 727747.
Mao, TK, Powell, JJ, Van de Water, J, Keen, CL, Schmitz, HH & Gershwin, ME (1999) The influence of cocoa procyanidins on the transcription of interleukin-2 in peripheral blood mononuclear cells. Int J Immunotherapy 15, 2329.
Mao, TK, Powell, JJ, Van de Water, J, Keen, CL, Schmitz, HH, Hammerstone, JF & Gershwin, ME (2000a) The effect of cocoa procyanidins on the transcription and secretion of interleukin 1β in peripheral blood mononuclear cells. Life Sci 66, 13771386.
Mao, TK, Powell, JJ, Van de Water, J, Keen, CL, Schmitz, HH & Gershwin, ME (2000b) Effect of cocoa procyanidins on the secretion of interleukin-4 in peripheral blood mononuclear cells. J Med Food 3, 107114.
Mao, TK, Van de Water, J, Keen, CL, Schmitz, HH & Gershwin, ME (2000c) Cocoa procyanidins and human cytokine transcription and secretion. J Nutr 130, 2093S2099S.
Mao, TK, Van de Water, J, Keen, CL, Schmitz, HH & Gershwin, ME (2002a) Modulation of TNF-α secretion in peripheral blood mononuclear cells by cocoa flavanols and procyanidins. Dev Immunol 9, 135141.
Mao, TK, Van de Water, J, Keen, CL, Schmitz, HH & Gershwin, ME (2002b) Effect of cocoa flavanols and their related oligomers on the secretion of interleukin-5 in peripheral blood mononuclear cells. J Med Food 5, 1722.
Mao, TK, Van de Water, J, Keen, CL, Schmitz, HH & Gershwin, ME (2003) Cocoa flavonols and procyanidins promote transforming growth factor-β 1 homeostasis in peripheral blood mononuclear cells. Exp Biol Med 228, 9399.
Meydani, SN, Meydani, M, Blumberg, J, Leka, LS, Pedrosa, M, Diamond, R & Schaefer, EJ (1998) Assessment of the safety of supplementation with different amounts of vitamin E in healthy older adults. Am J Clin Nutr 68, 311318.
Nelson, BH & Willerford, DM (1998) Biology of the interleukin-2 receptor. Adv Immunol 70, 181.
Noé, V, Peñuelas, S, Lamuela-Raventós, RM, Permanyer, J, Ciudad, CJ & Izquierdo-Pulido, M (2004) Epicatechin and cocoa polyphenolic extract modulate gene expression in human Caco-2-cells. J Nutr 134, 25092516.
Okamoto, I, Iwaki, KKoya-Miyata, STanimoto, T, Kohno, K, Ikeda, M & Kurimoto, M (2002) The flavonoid kaempferol suppresses the graft-versus-host reaction by inhibiting type 1 cytokine production and CD8+T cell engraftment. Clin Immunol 103, 132144.
Pearson, DA, Paglieroni, TG, Rein, D, Wun, T, Schramm, DD, Wang, J, Holt, RR, Gosselin, R, Schmitz, HH & Keen, CL (2002) The effects of flavanol-rich cocoa and aspirin on ex vivo platelet function. Thromb Res 106, 191197.
Pietta, PG (2000) Flavonoids as antioxidants. J Nat Prod 63, 10351042.
Powell, JD, Ragheb, JA, Kitagawa-Sakakida, S & Schwartz, RH (1998) Molecular regulation of interleukin-2 expression by CD28 co-stimulation and anergy. Immunol Rev 165, 287300.
Proust, JJ, Shaper, NL, Buchholz, MA & Nordin, AA (1991) T cell activation in the absence of interleukin 2 (IL-2) results in the induction of high affinity IL-2 receptor unable to transmit a proliferative signal. Eur J Immunol 21, 335341.
Richelle, M, Tavazzi, I, Ensien, M & Offord, E (1999) Plasma kinetics in man of epicatechin from black chocolate. Eur J Clin Nutr 53, 2226.
Rios, LY, Bennett, RN, Lazarus, SA, Rémésy, CScalbert, A & Williamson, G (2002) Cocoa procyanidins are stable during gastric transit in humans. Am J Clin 76, 11061110.
Rios, LY, Gonthier, MP, Rémesy, C, Mila, I, Lapierre, C, Lazarus, SA, Williamson, G & Scalbert, A (2003) Chocolate intake increases urinary excretion of polyphenol-derived phenolic acids in healthy human subjects. Am J Clin Nutr 77, 912918.
Sanbongi, C, Suzuki, N & Tsuyoshi, S (1997) Polyphenols in chocolate, which have antioxidant activity, modulate immune functions in humans in vitro. Cell Immunol 177, 129136.
Sánchez-Rabaneda, F, Jáuregui, O, Casals, I, Andrés-Lacueva, C, Izquierdo-Pulido, M & Lamuela-Raventós, RM (2003) Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J Mass Spectrom 38, 3542.
Schramm, DD, Wang, JF, Holt, RR, Enunsa, JL, Gonsalves, JL, Lazarus, SA, Schmitz, HH, German, JB & Keen, CL (2001) Chocolate procyanidins decrease leukotriene-prostacyclin ratio in humans and human aortic endothelial cells. Am J Clin Nutr 73, 3640.
Smith, KA & Cantrell, DA (1985) Interleukin 2 regulates its own receptors. Proc Natl Acad Sci U S A 82, 864868.
Spanish Department of Agriculture, Fishery and Food (2002). La alimentación en España 2002. Madrid: Spanish Department of Agriculture, Fishery and Food.
Steinberg, FM, Bearden, M & Keen, CL (2003) Cocoa and chocolate flavonoids: implications for cardiovascular health. J Am Diet Assoc 103, 215223.
Stoeck, M, Lees, R, Szamel, M, Pantaleo, GMcDonald, HR (1989) Comparison of phorbol-12-myristate-13-acetate and dioctanoyl-sn-glycerol in the activation of EL4/6·1 thymoma cells. J Cell Physiol 138, 541547.
Swain, T & Hillis, WE (1969) The total phenolic constituents of Prunus domestica. J Sci Food Agric 46, 42924296.
Vinson, JA, Proch, J & Zubick, L (1999) Phenol antioxidant quantity and quality in foods: cocoa, dark chocolate and milk chocolate. J Agric Food Chem 47, 48214824.
Waldmann, TA, Goldman, CK, Robb, RJ, Depper, JM, Leonard, WJ, Sharrow, SO, Bongiovanni, K, Korsmeyer, SJ & Greene, WC (1984) Expression of interleukin 2 receptor on activated human B cells. J Exp Med 160, 14501466.
Waterhouse, AL, Shirley, JR & Donovan, JL (1996) Antioxidants in chocolate (letter). Lancet 348, 834.
Weisburger, JH (2001) Chemopreventive effects of cocoa polyphenols on chronic diseases. Exp Biol Med 226, 891897.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed