Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T02:45:34.283Z Has data issue: false hasContentIssue false

Effects of dietary excesses of vitamins A and D on some constituents of the blood of chicks

Published online by Cambridge University Press:  09 March 2007

T. G. Taylor
Affiliation:
Department of Physiology and Biochemistry, The University, Reading
K. M. L. Morris
Affiliation:
Department of Physiology and Biochemistry, The University, Reading
Jean Kirkley
Affiliation:
Department of Physiology and Biochemistry, The University, Reading
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Groups of chicks were given diets containing four levels of vitamins A and D, 1, 10, 100 and 1000 times the basal level, in all sixteen combinations, with the object of investigating a possible antagonism between the two vitamins.

2. Only diets containing 1000 times the basal level (approx. 1700 times the dietary requirements) of one or both vitamins depressed growth and induced changes in the blood.

3. The packed cell volume was substantially reduced from 4 weeks of age in the chicks given the highest level of vitamin A. It is suggested that this was due to an effect of the vitamin on the fragility of the red cells and thus on their life span.

4. Chicks given the toxic level of vitamin D showed an increase in plasma calcium and a decrease in plasma inorganic phosphorus. The highest level of vitamin A depressed plasma Ca without influencing plasma inorganic P. Increasing amounts of vitamin A given in combination with the highest level of vitamin D caused a progressive increase in the plasma inorganic P.

5. The highest level of dietary vitamin A significantly increased the activity in the plasma of three lysosomal enzymes: acid phosphatase, β-glucuronidase and arylsulphatase. Excess vitamin D given in conjunction with the basal level of vitamin A significantly depressed the plasma acid phosphatase and the activity of this enzyme increased with increasing amounts of vitamin A. Excess vitamin D had no influence on the other hydrolases studied.

6. A marked antagonism between the effects of excessive amounts of the two vitamins occurred only in respect of their actions on the plasma levels of Ca, inorganic P and acid phosphatase, all of which are involved in bone metabolism.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1968

References

Allen, R. J. L. (1940). Biochem. J. 34, 858.CrossRefGoogle Scholar
Agricultural Research Council (1963). The Nutrient Requirements of Farm Livestock. No. 1. Poultry. London: Agricultural Research Council.Google Scholar
Baker, J. R., Howell, J. McC. & Thompson, J. N. (1967). Br. J. exp. Path. 48, 507.Google Scholar
Beaufay, H., Jacques, P., Baudhuin, P., Sellinger, O. Z., Berthet, J. & de Duve, C. (1964). Biochem. J. 92, 184.CrossRefGoogle Scholar
Belanger, L. F. & Clark, I. (1967). Anat. Rec. 158, 443.CrossRefGoogle Scholar
Bell, D. J. (1960). Biochem. J. 75, 224.CrossRefGoogle Scholar
Bell, D. J. & Siller, W. G. (1962). Res. vet. Sci. 3, 219.CrossRefGoogle Scholar
Bleszynski, W. & Dzialoszynski, L. M. (1965). Biochem. J. 97, 360.CrossRefGoogle Scholar
Bowers, W. E. & de Duve, C. (1967). J. Cell Biol. 32, 339.CrossRefGoogle Scholar
Clark, I. & Bassett, C. A. L. (1962). J. exp. Med. 115, 147.CrossRefGoogle Scholar
Davies, A. W. & Moore, T. (1934). Biochem. J. 28, 288.CrossRefGoogle Scholar
Dingle, J. T. (1961). Biochem. J. 79, 509.CrossRefGoogle Scholar
Dingle, J. T. & Lucy, J. A. (1962). Biochem. J. 84, 611.CrossRefGoogle Scholar
Dingle, J. T., Lucy, J. A. & Fell, H. B. (1961). Biochem. J. 79, 497.CrossRefGoogle Scholar
Dingle, J. T., Sharman, I. M. & Moore, T. (1966). Biochem. J. 98, 476.CrossRefGoogle Scholar
Fishman, W. H., Springer, B. & Brunetti, R. (1948). J. biol. Chem. 173, 449.CrossRefGoogle Scholar
Harrison, H. C., Harrison, H. E. & Park, E. A. (1958). Am. J. Physiol. 192, 432.CrossRefGoogle Scholar
Hertelendy, F. & Taylor, T. G. (1961). Poult. Sci. 40, 108.CrossRefGoogle Scholar
Levvy, G. A. & Marsh, C. A. (1959). Adv. Carbohyd. Chem. 14, 381.Google Scholar
Morris, K. M. L. (1967). Action of parathyroid hormone in the domestic fowl. PhD Thesis, University of Reading.Google Scholar
Nieman, C. & Obbink, H. J. K. (1954). Vitams Horm. 12, 69.CrossRefGoogle Scholar
Papke, W. (1937). Z. ges. exp. Med. 101, 648.CrossRefGoogle Scholar
Poumeau-Delille, (1943). C. r. Séanc. Soc. Biol. 137, 604.Google Scholar
Pudelkiewicz, W. J., Webster, L., Olson, G. & Matterson, L. D. (1964). Poult. Sci. 43, 1157.CrossRefGoogle Scholar
Roy, A. B. (1953). Biochem. J. 53, 12.CrossRefGoogle Scholar
Roy, A. B. (1958). Biochem. J. 68, 519.CrossRefGoogle Scholar
Sellinger, O. Z., Beaufay, H., Jacques, P., Doyen, A. & de Duve, C. (1960). Biochem. J. 74, 450.CrossRefGoogle Scholar
Vaes, G. (1965). Biochem. J. 97, 393.CrossRefGoogle Scholar
Walker, S. E., Eylenburg, E. & Moore, T. (1947). Biochem. J. 41, 575.CrossRefGoogle Scholar
Wolbach, S. B. & Hegsted, D. M. (1952). Archs Path. 54, 30.Google Scholar