Skip to main content
×
×
Home

Effects of fructose consumption on postprandial TAG: an update on systematic reviews with meta-analysis

  • Rodrigo C. O. Macedo (a1), Alexandra F. Vieira (a1), Cesar E. J. Moritz (a1) and Alvaro Reischak-Oliveira (a1)
Abstract

The aim of this study was to re-examine the chronic effect (>7 d) of fructose consumption on postprandial TAG, in adolescents and adults. The research was carried out in March 2017 and used different electronic databases, such as Medline® (Pubmed®), Embase® and Cochrane. The review considered clinical trials (parallel or crossed) that evaluated the effect of fructose consumption for a period longer than 7 d, in humans. Two investigators independently performed data extraction. The outcome was the absolute delta of TAG concentration in a 4-h postprandial period. The results were presented with delta mean difference between treatments with 95 % CI. The calculations were made based on random-effect models. Statistical heterogeneity of treatment effects between studies was assessed by Cochrane’s ‘Q Test’ and ‘I2’ inconsistency test. The meta-analysis of the twelve selected interventions (n 318) showed that fructose generated larger variation (δ) of TAG concentrations during the postprandial period, compared with other carbohydrates (mean difference: 8·02 (95 % CI 0·46, 15·58) mg/dl (0·09 (95 % CI 0·01, 0·18) mmol/l); I2: 74 %). High heterogeneity was generated almost exclusively by one study, and its withdrawal did not alter the result. We concluded that chronic consumption of fructose (>7 d) has a negative role on postprandial TAG in healthy adolescents and adults, as well as in overweight/obese individuals, but not in diabetics.

Copyright
Corresponding author
*Corresponding author: R. C. O. Macedo, email nutricionistarodrigomacedo@gmail.com
References
Hide All
1. Ooi, TC & Nordestgaard, BG (2011) Methods to study postprandial lipemia. Current Vasc Pharmacol 9, 302308.
2. Moreton, JR (1947) Atherosclerosis and alimentary hyperlipemia. Science 106, 190191.
3. Stefanutti, C, Labbadia, G & Athyros, VG (2014) Hypertriglyceridaemia, postprandial lipaemia and non-HDL cholesterol. Curr Pharm Des 20, 62386248.
4. Lairon, D & Defoort, C (2011) Effects of nutrients on postprandial lipemia. Current Vasc Pharmacol 9, 309312.
5. Lairon, D, Lopez-Miranda, J & Williams, C (2007) Methodology for studying postprandial lipid metabolism. Eur J Clin Nutr 61, 11451161.
6. Kolovou, GD, Mikhailidis, DP, Kovar, J, et al. (2011) Assessment and clinical relevance of non-fasting and postprandial triglycerides: an expert panel statement. Current Vasc Pharmacol 9, 258270.
7. Mora, S, Rifai, N, Buring, JE, et al. (2008) Fasting compared with nonfasting lipids and apolipoproteins for predicting incident cardiovascular events. Circulation 118, 9931001.
8. Miller, M, Stone, NJ, Ballantyne, C, et al. (2011) Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 123, 22922333.
9. Nordestgaard, BG & Varbo, A (2014) Triglycerides and cardiovascular disease. Lancet 384, 626635.
10. Bansal, S, Buring, JE, Rifai, N, et al. (2007) Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 298, 309316.
11. Bae, JH, Bassenge, E, Kim, KB, et al. (2001) Postprandial hypertriglyceridemia impairs endothelial function by enhanced oxidant stress. Atherosclerosis 155, 517523.
12. Cohen, JC, Noakes, TD & Benade, AJ (1989) Postprandial lipemia and chylomicron clearance in athletes and in sedentary men. Am J Clin Nutr 49, 443447.
13. Chong, MF, Fielding, BA & Frayn, KN (2007) Metabolic interaction of dietary sugars and plasma lipids with a focus on mechanisms and de novo lipogenesis. Proc Nutr Soc 66, 5259.
14. Parks, EJ, Skokan, LE, Timlin, MT, et al. (2008) Dietary sugars stimulate fatty acid synthesis in adults. J Nutr 138, 10391046.
15. Abdel-Sayed, A, Binnert, C, Le, KA, et al. (2008) A high-fructose diet impairs basal and stress-mediated lipid metabolism in healthy male subjects. Br J Nutr 100, 393399.
16. Bidwell, AJ, Fairchild, TJ, Redmond, J, et al. (2014) Physical activity offsets the negative effects of a high-fructose diet. Med Sci Sports Exerc 46, 20912098.
17. Livesey, G & Taylor, R (2008) Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: meta-analyses and meta-regression models of intervention studies. Am J Clin Nutr 88, 14191437.
18. Stanhope, KL, Schwarz, JM, Keim, NL, et al. (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119, 13221334.
19. Aeberli, I, Hochuli, M, Gerber, PA, et al. (2013) Moderate amounts of fructose consumption impair insulin sensitivity in healthy young men: a randomized controlled trial. Diabetes Care 36, 150156.
20. Chong, MF, Fielding, BA & Frayn, KN (2007) Mechanisms for the acute effect of fructose on postprandial lipemia. Am J Clin Nutr 85, 15111520.
21. Chiavaroli, L, de Souza, RJ, Ha, V, et al. (2015) Effect of fructose on established lipid targets: a systematic review and meta-analysis of controlled feeding trials. J Am Heart Assoc 4, e001700.
22. Evans, RA, Frese, M, Romero, J, et al. (2017) Chronic fructose substitution for glucose or sucrose in food or beverages has little effect on fasting blood glucose, insulin, or triglycerides: a systematic review and meta-analysis. Am J Clin Nutr 106, 519529.
23. Evans, RA, Frese, M, Romero, J, et al. (2017) Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: a systematic review and meta-analysis. Am J Clin Nutr 106, 506518.
24. David Wang, D, Sievenpiper, JL, de Souza, RJ, et al. (2014) Effect of fructose on postprandial triglycerides: a systematic review and meta-analysis of controlled feeding trials. Atherosclerosis 232, 125133.
25. Liberati, A, Altman, DG, Tetzlaff, J, et al. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151, W65W94.
26. Shamseer, L, Moher, D, Clarke, M, et al. (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 349, g7647.
27. Kolovou, GD, Mikhailidis, DP, Nordestgaard, BG, et al. (2011) Definition of postprandial lipaemia. Current Vasc Pharmacol 9, 292301.
28. Mihas, C, Kolovou, GD, Mikhailidis, DP, et al. (2011) Diagnostic value of postprandial triglyceride testing in healthy subjects: a meta-analysis. Current Vasc Pharmacol 9, 271280.
29. Weiss, EP, Fields, DA, Mittendorfer, B, et al. (2008) Reproducibility of postprandial lipemia tests and validity of an abbreviated 4-hour test. Metabolism 57, 14791485.
30. Liberati, A, Altman, DG, Tetzlaff, J, et al. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339, b2700.
31. Higgins, JPT & Green, S (2008) Cochrane Handbook for Systematic Reviews of Interventions, Cochrane Book Series , Cochrane Collaboration. Chichester; Hoboken, NJ: Wiley-Blackwell.
32. Higgins, JP, Thompson, SG, Deeks, JJ, et al. (2003) Measuring inconsistency in meta-analyses. BMJ 327, 557560.
33. Marriott, BP, Cole, N & Lee, E (2009) National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J Nutr 139, 1228S1235S.
34. Bantle, JP, Laine, DC & Thomas, JW (1986) Metabolic effects of dietary fructose and sucrose in types I and II diabetic subjects. JAMA 256, 32413246.
35. Bantle, JP, Raatz, SK, Thomas, W, et al. (2000) Effects of dietary fructose on plasma lipids in healthy subjects. Am J Clin Nutr 72, 11281134.
36. Bantle, JP, Swanson, JE, Thomas, W, et al. (1992) Metabolic effects of dietary fructose in diabetic subjects. Diabetes Care 15, 14681476.
37. Swanson, JE, Laine, DC, Thomas, W, et al. (1992) Metabolic effects of dietary fructose in healthy subjects. Am J Clin Nutr 55, 851856.
38. Swarbrick, MM, Stanhope, KL, Elliott, SS, et al. (2008) Consumption of fructose-sweetened beverages for 10 weeks increases postprandial triacylglycerol and apolipoprotein-B concentrations in overweight and obese women. Br J Nutr 100, 947952.
39. Stanhope, KL, Bremer, AA, Medici, V, et al. (2011) Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. J Clin Endocrinol Metab 96, E1596E1605.
40. Heden, TD, Liu, Y, Park, YM, et al. (2014) Moderate amounts of fructose- or glucose-sweetened beverages do not differentially alter metabolic health in male and female adolescents. Am J Clin Nutr 100, 796805.
41. Mozaffarian, D (2017) Conflict of interest and the role of the food industry in nutrition research. JAMA 317, 17551756.
42. Lundh, A, Lexchin, J, Mintzes, B, et al. (2017) Industry sponsorship and research outcome. Cochrane Database Syst Rev, issue 2, MR000033.
43. Sun, SZ & Empie, MW (2012) Fructose metabolism in humans – what isotopic tracer studies tell us. Nutr Metab (Lond) 9, 89.
44. Elliott, SS, Keim, NL, Stern, JS, et al. (2002) Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76, 911922.
45. Bray, GA, Nielsen, SJ & Popkin, BM (2004) Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79, 537543.
46. Faeh, D, Minehira, K, Schwarz, JM, et al. (2005) Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 54, 19071913.
47. Egli, L, Lecoultre, V, Theytaz, F, et al. (2013) Exercise prevents fructose-induced hypertriglyceridemia in healthy young subjects. Diabetes 62, 22592265.
48. Le, KA, Faeh, D, Stettler, R, et al. (2006) A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am J Clin Nutr 84, 13741379.
49. Ter Horst, KW, Schene, MR, Holman, R, et al. (2016) Effect of fructose consumption on insulin sensitivity in nondiabetic subjects: a systematic review and meta-analysis of diet-intervention trials. Am J Clin Nut 104, 15621576.
50. Cox, CL, Stanhope, KL, Schwarz, JM, et al. (2012) Consumption of fructose-sweetened beverages for 10 weeks reduces net fat oxidation and energy expenditure in overweight/obese men and women. Eur J Clin Nutr 66, 201208.
51. Bes-Rastrollo, M, Schulze, MB, Ruiz-Canela, M, et al. (2013) Financial conflicts of interest and reporting bias regarding the association between sugar-sweetened beverages and weight gain: a systematic review of systematic reviews. PLoS Med 10, e1001578; discussion e1001578.
52. Chartres, N, Fabbri, A & Bero, LA (2016) Association of industry sponsorship with outcomes of nutrition studies: a systematic review and meta-analysis. JAMA Intern Med 176, 17691777.
53. Sievenpiper, JL, Carleton, AJ, Chatha, S, et al. (2009) Heterogeneous effects of fructose on blood lipids in individuals with type 2 diabetes: systematic review and meta-analysis of experimental trials in humans. Diabetes Care 32, 19301937.
54. Cozma, AI, Sievenpiper, JL, de Souza, RJ, et al. (2012) Effect of fructose on glycemic control in diabetes: a systematic review and meta-analysis of controlled feeding trials. Diabetes Care 35, 16111620.
55. Ha, V, Sievenpiper, JL, de Souza, RJ, et al. (2012) Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension 59, 787795.
56. Chiu, S, Sievenpiper, JL, de Souza, RJ, et al. (2014) Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr 68, 416423.
57. Sievenpiper, JL, de Souza, RJ, Mirrahimi, A, et al. (2012) Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis. Ann Intern Med 156, 291304.
58. Wang, DD, Sievenpiper, JL, de Souza, RJ, et al. (2012) The effects of fructose intake on serum uric acid vary among controlled dietary trials. J Nutr 142, 916923.
59. Stanhope, KL, Griffen, SC, Bair, BR, et al. (2008) Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals. Am J Clin Nutr 87, 11941203.
60. Sluik, D, Engelen, AI & Feskens, EJ (2015) Fructose consumption in the Netherlands: the Dutch National Food Consumption Survey 2007–2010. Eur J Clin Nutr 69, 475481.
61. Tappy, L & Le, KA (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90, 2346.
62. Choo, VL & Sievenpiper, JL (2015) The ecologic validity of fructose feeding trials: supraphysiological feeding of fructose in human trials requires careful consideration when drawing conclusions on cardiometabolic risk. Front Nutr 2, 12.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Macedo et al. supplementary material
Macedo et al. supplementary material 1

 Word (183 KB)
183 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed