Skip to main content Accessibility help
×
Home

Effects of high altitude and season on fasting heat production in the yak Bos grunniens or Poephagus grunniens

  • Xing-Tai Han (a1), Ao-Yun Xie (a1), Xi-Chao Bi (a1), Shu-Jie Liu (a1) and Ling-Hao Hu (a1)...

Abstract

Thirty growing yaks Bos grunniens or Poephagus grunniens, 1·0–3·5 years and 50–230kg, from their native altitudes (3000–4000m), were used to study the basal metabolism in this species and to evaluate the effects of high altitude and season on the energy metabolism. Fasting heat production (FHP) was measured at altitudes of 2260, 3250 and 4270m on the Tibetan plateau in both the summer and the winter, after a 90d adaptation period at each experimental site. Gas exchanges of the whole animals were determined continuously for 3d (4–5 times per d, 10–12 min each time) after a 96 h starvation period, using closed-circuit respiratory masks. Increasing altitude at similar ambient temperature (Ta) did not affect (P>0·10) FHP in the summer, but decreased (P<0·05) it at different Ta in the winter. However, the decrease of FHP in the winter was mainly due to the decrease of Ta instead of the increase of altitude. In the summer, the respiratory rate, heart rate and body temperature were unaffected by altitude, except for a decrease (P<0·05) in body temperature at 4270m; in the winter, they were decreased (P<0·05) by increasing altitude. In both seasons, the RER was decreased (P<0·05) by increasing altitude. At all altitudes for all groups, the daily FHP was higher (P<0·05) in the summer (Ta 6–24°C) than in the winter (Ta 0 to -30°C), and the Ta-corrected FHP averaged on 920 kJ/kg body weight0·52 at Ta 8–14°C and on 704 kJ/kg body weight0·52 at Ta -15°C respectively. We conclude that in the yak high altitude has no effect on the energy metabolism, whereas the cold ambient temperature has a significant depressing effect. The results confirm that the yak has an excellent adaptation to both high altitude and extremely cold environments.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of high altitude and season on fasting heat production in the yak Bos grunniens or Poephagus grunniens
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of high altitude and season on fasting heat production in the yak Bos grunniens or Poephagus grunniens
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of high altitude and season on fasting heat production in the yak Bos grunniens or Poephagus grunniens
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Xing-Tai Han, present address: Instituto di Zootechnica, Facoltà di Agraria, Università Cattolica del Sacro Cuore, 29100, Piacenza, Italy, fax +39 0523 599276, email xingtaihan@yahoo.ca

References

Hide All
Agricultural Research Council (1980) The Nutrient Requirement of Ruminant Livestock. London: Commonwealth Agriculture Bureaux.
Armellini, F, Zamboni, M, Robbi, R, Todesco, T, Bissoli, L, Mino, A, Angelini, G, Micciolo, R & Bosello, O (1997) The effects of high altitude trekking on body composition and resting metabolic rate. Hormone and Metabolic Research 29, 458461.
Bencowitz, HZ, Wagner, PD & West, JB (1982) Effect of change in P O2 on exercise tolerance at high altitude: a theoretical study. Journal of Applied Physiology 53, 14871495.
Blaxter, KL (1978) The effect of stimulated altitude on the heat increment of feed in sheep. British Journal of Nutrition 39, 659661.
Blaxter, KL & Wainman, FW (1961) Environmental temperature and the energy metabolism and heat emission of steers. Journal of Agricultural Science, Cambridge 56, 8190.
Bouverot, P, Collin, R, Favier, R, Flandrois, R & Sebert, P (1981) Carotid chemoreceptor function in ventilatory and circulatory O2 convection of exercising dogs at low and high altitude. Respiratory Physiology 43, 147167.
Brosh, A, Beneke, G, Fennell, S, Wright, D, Aharoni, Y & Young, B (1994) Prediction of energy expenditure by heart rate measurements in cattle: the effect of exercise, diet and sun radiation. In Energy Metabolism of Farm Animals. Proceedings of the 13th International Symposium, EAAP Publication no. 76, pp. 3538Mojácar, Spain: EAAP.
Brouwer, E (1965) Report of subcommittee on constants and factors. In Energy Metabolism, EAAP Publication no. 11, pp. 441 [Blaxter, KL, editor]. London: Academic Press.
Butterfield, GE, Gates, J, Fleming, S, Brooks, GA, Sutton, JR & Reeves, JT (1992) Increased energy intake minimizes weight loss in men at high altitude. Journal of Applied Physiology 72, 17411748.
Cai, L & Wiener, G (1995) The Yak. FAO Regional Office for Asia and the Pacific, Bangkok, Thailand.
Chiodi, H (1957) Respiratory adaptations to chronic high altitude hypoxia. Journal of Applied Physiology 10, 8187.
Dempsey, JA & Forster, HV (1982) Mediation of ventilatory adaptations. Physiological Review 62, 262346.
Forster, HV, Bisgard, GE & Klein, JP (1981) Effect of peripheral chemorecepter denervation on acclimatization of goats during hypoxia. Journal of Applied Physiology 50, 392398.
Forster, HV, Bisgard, GE, Rasmussen, B, Orr, JA, Buss, DD & Manohar, M (1976) Ventilatory control in peripheral chemorecepter denervated ponies during chronic hypoxemia. Journal of Applied Physiology 41, 878885.
Frappell, P, Lanthier, C, Baudinette, RV & Mortola, JP (1992) Metabolism and ventilation in acute hypoxia: a comparative analysis in small mammalian species. American Journal of Physiology 262, R1040R1046.
Gautier, H (1996) Interactions among metabolic rate, hypoxia, and control of breathing. Journal of Applied Physiology 81, 521527.
Gautier, H & Bonora, M (1992) Ventilatory and metabolic responses to cold and hypoxia in intact and carotid body-denervated rats. Journal of Applied Physiology 73, 847854.
Gill, MB & Pugh, LGC (1964) Basal metabolism and respiration in men living at 5800 m (19,000 ft). Journal of Applied Physiology 19, 949954.
Grover, RF (1963) Basal oxygen uptake of man at high altitude. Journal of Applied Physiology 18, 909912.
Han, XT (1990) Factors affecting fasting metabolism in ruminants. Qinghai Journal of Animal and Veterinary Sciences 20(4), 3033.
Han, XT, Bi, XC, Xie, AY & Hu, LH (1993) The energy metabolism of growing yaks. Qinghai Animal Industry 1, 2023.
Han, XT, Chen, J & Han, ZK (1998) Ruminal nitrogen metabolism and the flows of nitrogen fractions reaching the duodenum of growing yaks fed diets containing different levels of crude protein. Acta Zoonutrimenta Sinica 10(1), 3443.
Han, XT, Liu, SJ, Bi, XC, Wang, WB, Xie, AY & Hu, LH (1992) The thermoneutrality zone and the regularity of heat production beyond the zone in fasted growing yaks. Qinghai Journal of Animal and Veterinary Sciences 22(2), 1820.
Han, XT & Xie, AY (1991) The maintenance energy requirement of growing yaks. Qinghai Journal of Animal and Veterinary Sciences 21(1), 1011.
Han, XT, Xie, AY, Bi, XC, Liu, SJ & Hu, LH (2002) Effects of altitude, ambient temperature and solar radiation on fasting heat production in yellow cattle. British Journal of Nutrition (In the Press).
Han, XT, Xue, B, Du, JZ & Hu, LH (2001) Net fluxes of peptide and amino acid across mesenteric-drained and portal-drained viscera of yak cows fed a straw–concentrate diet at maintenance level. Journal of Agricultural Science, Cambridge 136, 119127.
Hannon, JP (1978) Comparative altitude adaptability of men and women. In Environmental Stress: Individual Human Adaptations, pp. 335350 [Folinsbee, LJ, Wagner, JA, Borgia, JF, Drinkwater, BL, Gliner, JA and Bedi, JF, editors]. New York, NY: Academic.
Hannon, JP, Klain, GJ, Sudman, DM & Sulivan, FJ (1976) Nutritional aspects of high altitude exposure in women. American Journal of Clinical Nutrition 29, 604613.
Hannon, JP, Shields, JL & Harris, CW (1969) Anthropometric changes associated with high altitude acclimatization in women. American Journal of Physiological Anthropology 31, 7784.
Hannon, JP & Sudman, DM (1973) Basal metabolic and cardiovascular function of women during altitude acclimatization. Journal of Applied Physiology 34, 471477.
Hayes, JP (1989 a) Field and maximal metabolic rates of deer mice (Peromyscus maniculatus) at low and high altitudes. Physiological Zoology 62, 732744.
Hayes, JP (1989 b) Altitude and seasonal effects on aerobic metabolism of deer mice. Journal of Comparative Physiology 159B, 453459.
Hemingway, A & Nahas, GG (1952) Effect of varying degrees of hypoxia on temperature regulation. American Journal of Physiology 170, 426433.
Hill, JR (1959) The oxygen consumption of new-born and adult mammals. Its dependence on the oxygen tension in the inspired air and on the environmental temperature. Journal of Physiology, London 149, 346373.
Hou, PC & Huang, SP (1999) Metabolic and ventilatory responses to hypoxia in two altitudinal populations of the toad, Bufo bankorensis. Comparative Biochemistry and Physiology 124A, 413421.
Hu, LH, Xie, AY & Han, XT (1994) Study on the body surface areas of growing yaks and cattle. Chinese Journal of Animal Science 30(6), 910.
Kellogg, RH, Pace, N, Archibald, ER & Vaughan, BE (1957) Respiratory response to inspired CO2 during acclimatization to an altitude of 12,470 feet. Journal of Applied Physiology 11, 665671.
Lahiri, S (1968) Alveolar gas pressures in man with life-time hypoxia. Respiratory Physiology 4, 373386.
Mawson, JT, Braun, B, Rock, PB, Moore, LG, Mazzeo, R & Butterfield, GE (2000) Women at altitude: energy requirement at 4300 m. Journal of Applied Physiology 88, 272281.
Moore, LG, Cymerman, A, Huang, SY, McCullough, RE, McCullough, RG, Rock, PB, Young, A, Young, P, Weil, JV & Reeves, JT (1987) Propranolol blocks metabolic rate increase but not ventilatory acclimatization to 4,300 m. Respiratory Physiology 70, 195205.
Mortola, JP & Rezzonico, R (1988) Metabolic and ventilatory rates in newborn kittens during acute hypoxia. Respiratory Physiology 73, 5568.
Mortola, JP, Rezzonico, R & Lanthier, C (1989) Ventilation and oxygen consumption during acute hypoxia in newborn mammals: a comparative analysis. Respiratory Physiology 78, 3143.
National Research Council (1984) Nutrient Requirements of Beef Cattle. Washington, DC: National Academy Press.
Piiper, J, Cerretelli, P, Cuttica, F & Mangili, F (1966) Energy metabolism and circulation in dogs exercising in hypoxia. Journal of Applied Physiology 21, 11431149.
Richards, JI & Lawrence, PR (1984) The estimation of energy expenditure from heart rate measurements in working oxen and buffalo. Journal of Agricultural Science, Cambridge 102, 711717.
Rosenmann, M & Morrison, P (1975) Metabolic response of highland and lowland rodents to simulated high altitudes and cold. Comparative Biochemistry and Physiology 51A, 523530.
Saiki, C, Matsuoka, T & Mortola, JP (1994) Metabolic–ventilatory interaction in conscious rats: effect of hypoxia and ambient temperature. Journal of Applied Physiology 76, 15941599.
Staples, JF, Hershkowitz, JJ & Boutilier, RG (2000) Effects of ambient P O2 and temperature on oxygen uptake in. Nautilus pompilius. Journal of Comparative Physiology 170B, 231236.
Stock, MJ, Norton, NG, Ferro-Luzzi, A & Evans, E (1978) Effect of altitude on dietary-induced thermogenesis at rest and during light exercise in man. Journal of Applied Physiology 45, 345349.
Terzioglu, M & Aykut, R (1954) Variations in basal metabolic rate at 1·85 km altitude. Journal of Applied Physiology 7, 329332.
Turek, Z, Kreuzer, F & Hoofd, LJC (1973) Advantage or disadvantage of decrease of blood oxygen affinity for tissue oxygen supply at hypoxia. Pflügers Archiv 342, 185197.
Webster, AJF (1967) Continuous measurement of heart rate as an indicator of the expenditure of sheep. British Journal of Nutrition 21, 769785.
West, JB (1984) Human physiology at extreme altitudes on Mount Everest. Science 223, 784788.
Xue, B, Chai, ST, Liu, SJ & Wang, WB (1994) Study on the protein requirement of growing yaks. In Yak Production in Central Asian Highlands. Proceedings of the First International Congress on the Yak, pp. 198201. Lanzhou: Gansu.
Xue, B & Han, XT (1999) A comparative study on the protein degradability of foodstuffs in the rumen of growing yaks and growing Holsteins. Chinese Journal of Herbivore Science 1(3), 37.
Yamamoto, S, McLean, JA & Downie, AJ (1979) Estimation of heat production from heart rate measurements in cattle. British Journal of Nutrition 42, 507513.
Zhuang, J, Droma, T, Sun, S, Janes, C, McCullough, RE, McCullough, RG, Cymerman, A, Huang, SY, Reeves, JT & Moore, LG (1993) Hypoxic ventilatory responsiveness in Tibetan compared with Han residents of 3658 m. Journal of Applied Physiology 74, 303311.

Keywords

Effects of high altitude and season on fasting heat production in the yak Bos grunniens or Poephagus grunniens

  • Xing-Tai Han (a1), Ao-Yun Xie (a1), Xi-Chao Bi (a1), Shu-Jie Liu (a1) and Ling-Hao Hu (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed