Skip to main content Accessibility help
×
×
Home

Higher dietary and serum carotenoid levels are associated with lower carotid intima–media thickness in middle-aged and elderly people

  • Cheng Wang (a1), Rui Qiu (a1), Yi Cao (a1), Wei-fu Ouyang (a2), Hua-bin Li (a1), Wen-hua Ling (a1) and Yu-Ming Chen (a1)...

Abstract

Several studies have suggested that higher carotenoid levels may be beneficial for atherosclerosis patients, but few studies have examined this relationship in the Chinese population. This cross-sectional study examined the association between the levels of carotenoids in diet and serum and carotid intima–media thickness (IMT) in Chinese adults aged 50–75 years in Guangzhou, China. Dietary intake was assessed using a FFQ. HPLC was used to assay the serum concentrations of α-carotene, β-carotene, lutein+zeaxanthin, β-cryptoxanthin and lycopene. The IMT at the common carotid artery (CCA) and bifurcation of the carotid artery was measured by B-mode ultrasound. A total of 3707 and 2947 participants were included in the analyses of dietary and serum carotenoids. After adjustment for demographic, socio-economic and lifestyle factors, all the serum carotenoids levels except lycopene were found to be inversely associated with the IMT at the CCA and bifurcation (P trend<0·001 to 0·013) in both men and women. The absolute mean differences in the IMT between the subjects in the extreme quartiles of serum carotenoid levels were 0·034 mm (α-carotene), 0·037 mm (β-carotene), 0·032 mm (lutein+zeaxanthin), 0·030 mm (β-cryptoxanthin), 0·015 mm (lycopene) and 0·035 mm (total carotenoids) at the CCA; the corresponding values were 0·025, 0·053 0·043, 0·050, 0·011 and 0·042 mm at the bifurcation. The favourable associations were also observed between dietary carotenoids (except lycopene) and the CCA IMT. In conclusion, elevated carotenoid levels in diet and serum are associated with lower carotid IMT values (particular at the CCA) in Chinese adults.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Higher dietary and serum carotenoid levels are associated with lower carotid intima–media thickness in middle-aged and elderly people
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Higher dietary and serum carotenoid levels are associated with lower carotid intima–media thickness in middle-aged and elderly people
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Higher dietary and serum carotenoid levels are associated with lower carotid intima–media thickness in middle-aged and elderly people
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Professor Y.-M. Chen, fax +86 20 87330446, email chenyum@mail.sysu.edu.cn

Footnotes

Hide All

These authors contributed equally to this work.

Footnotes

References

Hide All
1. Young, AJ & Lowe, GM (2001) Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385, 2027.
2. Mathers, CD (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3, 20112030.
3. Aatola, H, Koivistoinen, T, Hutri-Kahonen, N, et al. (2010) Lifetime fruit and vegetable consumption and arterial pulse wave velocity in adulthood: the Cardiovascular Risk in Young Finns Study. Circulation 122, 25212528.
4. Tavakoli, S & Asmis, R (2012) Reactive oxygen species and thiol redox signaling in the macrophage biology of atherosclerosis. Antioxid Redox Signal 17, 17851795.
5. Peter Libby, MD (2012) History of discovery: inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32, 20452051.
6. Zou, Z, Xu, X, Huang, Y, et al. (2011) High serum level of lutein may be protective against early atherosclerosis: the Beijing atherosclerosis study. Atherosclerosis 219, 789793.
7. Klipstein-Grobusch, K, Launer, LJ, Geleijnse, JM, et al. (2000) Serum carotenoids and atherosclerosis. The Rotterdam Study. Atherosclerosis 148, 4956.
8. Dwyer, JH, Navab, M, Dwyer, KM, et al. (2001) Oxygenated carotenoid lutein and progression of early atherosclerosis : The Los Angeles Atherosclerosis Study. Circulation 103, 29222927.
9. Karppi, J, Kurl, S, Ronkainen, K, et al. (2013) Serum carotenoids reduce progression of early atherosclerosis in the carotid artery wall among Eastern Finnish men. PLOS ONE 8, e64107.
10. Ito, Y, Kurata, M, Suzuki, K, et al. (2006) Cardiovascular disease mortality and serum carotenoid levels: a Japanese population-based follow-up study. J Epidemiol 16, 154160.
11. Dwyer, JH, Paul-Labrador, MJ, Fan, J, et al. (2004) Progression of carotid intima-media thickness and plasma antioxidants: the Los Angeles Atherosclerosis Study. Arterioscler Thromb Vasc Biol 24, 313319.
12. Koh, WP, Yuan, JM, Wang, R, et al. (2011) Plasma carotenoids and risk of acute myocardial infarction in the Singapore Chinese Health Study. Nutr Metab Carbiovasc Dis 21, 685690.
13. Sesso, HD, Buring, JE, Norkus, EP, et al. (2004) Plasma lycopene, other carotenoids, and retinol and the risk of cardiovascular disease in women. Am J Clin Nutr 79, 4753.
14. Xu, XR, Zou, ZY, Huang, YM, et al. (2012) Serum carotenoids in relation to risk factors for development of atherosclerosis. Clin Biochem 45, 13571361.
15. Wu, H, Flint, AJ, Qi, Q, et al. (2015) Association between dietary whole grain intake and risk of mortality: two large prospective studies in US men and women. JAMA Intern Med 175, 373384.
16. Muraki, I, Wu, H, Imamura, F, et al. (2015) Rice consumption and risk of cardiovascular disease: results from a pooled analysis of 3 U.S. cohorts. Am J Clin Nutr 101, 164172.
17. Michas, G, Micha, R & Zampelas, A (2014) Dietary fats and cardiovascular disease: putting together the pieces of a complicated puzzle. Atherosclerosis 234, 320328.
18. Iso, H, Kobayashi, M, Ishihara, J, et al. (2006) Intake of fish and n3 fatty acids and risk of coronary heart disease among Japanese – The Japan Public Health Center-based (JPHC) Study Cohort I. Circulation 113, 195202.
19. Vivekananthan, DP, Penn, MS, Sapp, SK, et al. (2003) Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361, 20172023.
20. Lorenz, MW, Markus, HS, Bots, ML, et al. (2007) Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 115, 459467.
21. Burri, BJ, Dopler-Nelson, M & Neidllinger, TR (2003) Measurements of the major isoforms of vitamins A and E and carotenoids in the blood of people with spinal-cord injuries. J Chromatogr A 987, 359366.
22. Roman, MJ, Naqvi, TZ, Gardin, JM, et al. (2006) American Society of Echocardiography report. Clinical application of noninvasive vascular ultrasound in cardiovascular risk stratification: a report from the American Society of Echocardiography and the Society for Vascular Medicine and Biology. Vasc Med 11, 201211.
23. Wang, P, Chen, YM, He, LP, et al. (2012) Association of natural intake of dietary plant sterols with carotid intima-media thickness and blood lipids in Chinese adults: a cross-section study. PLOS ONE 7, e32736.
24. Zhang, B, Chen, YM, Huang, LL, et al. (2008) Greater habitual soyfood consumption is associated with decreased carotid intima-media thickness and better plasma lipids in Chinese middle-aged adults. Atherosclerosis 198, 403411.
25. Zhang, CX & Ho, SC (2009) Validity and reproducibility of a food frequency questionnaire among Chinese women in Guangdong province. Asia Pac J Clin Nutr 18, 240250.
26. Yang, YX (2004) China Food Composition Table 2004. Beijing: Peking University Medical Press.
27. Ried, K & Fakler, P (2011) Protective effect of lycopene on serum cholesterol and blood pressure: Meta-analyses of intervention trials. Maturitas 68, 299310.
28. Hosseini, B, Saedisomeolia, A & Skilton, MR (2017) Association between micronutrients intake/status and carotid intima media thickness: a systematic review. J Acad Nutr Diet 117, 6982.
29. Zou, ZY, Xu, XR, Lin, XM, et al. (2014) Effects of lutein and lycopene on carotid intima-media thickness in Chinese subjects with subclinical atherosclerosis: a randomised, double-blind, placebo-controlled trial. Br J Nutr 111, 474480.
30. D’Odorico, A, Martines, D, Kiechl, S, et al. (2000) High plasma levels of alpha- and beta-carotene are associated with a lower risk of atherosclerosis: results from the Bruneck study. Atherosclerosis 153, 231239.
31. Karppi, J, Kurl, S, Laukkanen, JA, et al. (2011) Plasma carotenoids are related to intima--media thickness of the carotid artery wall in men from eastern Finland. J Intern Med 270, 478485.
32. Rissanen, TH, Voutilainen, S, Nyyssonen, K, et al. (2003) Serum lycopene concentrations and carotid atherosclerosis: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr 77, 133138.
33. Rissanen, T, Voutilainen, S, Nyyssonen, K, et al. (2000) Low plasma lycopene concentration is associated with increased intima-media thickness of the carotid artery wall. Arterioscler Thromb Vasc Biol 20, 26772681.
34. Kritchevsky, SB, Tell, GS, Shimakawa, T, et al. (1998) Provitamin A carotenoid intake and carotid artery plaques: the Atherosclerosis Risk in Communities Study. Am J Clin Nutr 68, 726733.
35. Bonithon-Kopp, C, Coudray, C, Berr, C, et al. (1997) Combined effects of lipid peroxidation and antioxidant status on carotid atherosclerosis in a population aged 59-71 y: The EVA Study. Etude sur le Vieillisement Arteriel. Am J Clin Nutr 65, 121127.
36. Iribarren, C, Folsom, AR, Jacobs, DR Jr, et al. (1997) Association of serum vitamin levels, LDL susceptibility to oxidation, and autoantibodies against MDA-LDL with carotid atherosclerosis. A case-control study. The ARIC Study Investigators. Atherosclerosis Risk in Communities. Arterioscler Thromb Vasc Biol 17, 11711177.
37. El-Sohemy, A, Baylin, A, Kabagambe, E, et al. (2002) Individual carotenoid concentrations in adipose tissue and plasma as biomarkers of dietary intake. Am J Clin Nutr 76, 172179.
38. Jahns, L, Johnson, LK, Mayne, ST, et al. (2014) Skin and plasma carotenoid response to a provided intervention diet high in vegetables and fruit: uptake and depletion kinetics. Am J Clin Nutr 100, 930937.
39. Marshall, JR (2003) Methodologic and statistical considerations regarding use of biomarkers of nutritional exposure in epidemiology. J Nutr 133, Suppl. 3, 881S887S.
40. Rao, AV (2002) Lycopene, tomatoes, and the prevention of coronary heart disease. Exp Biol Med (Maywood) 227, 908913.
41. Fiedor, J & Burda, K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6, 466488.
42. Ciccone, MM, Cortese, F, Gesualdo, M, et al. (2013) Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediators Inflamm 2013, 782137.
43. Coyne, T, Ibiebele, TI, Baade, PD, et al. (2009) Metabolic syndrome and serum carotenoids: findings of a cross-sectional study in Queensland, Australia. Br J Nutr 102, 16681677.
44. Sugiura, M, Nakamura, M, Ogawa, K, et al. (2008) Associations of serum carotenoid concentrations with the metabolic syndrome: interaction with smoking. Br J Nutr 100, 12971306.
45. Hozawa, A, Jacobs, DR Jr, Steffes, MW, et al. (2007) Relationships of circulating carotenoid concentrations with several markers of inflammation, oxidative stress, and endothelial dysfunction: the Coronary Artery Risk Development in Young Adults (CARDIA)/Young Adult Longitudinal Trends in Antioxidants (YALTA) study. Clin Chem 53, 447455.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Wang et al. supplementary material
Wang et al. supplementary material 1

 Word (470 KB)
470 KB
WORD
Supplementary materials

Wang et al. supplementary material
Wang et al. supplementary material 2

 Word (163 KB)
163 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed