Hostname: page-component-594f858ff7-hf9kg Total loading time: 0 Render date: 2023-06-06T15:57:02.892Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": false, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Hypoglycaemic and anorexigenic activities of an α-amylase inhibitor from white kidney beans (Phaseolus vulgaris) in Wistar rats

Published online by Cambridge University Press:  09 March 2007

M. A. Tormo*
Department of Physiology, Faculty of Medicine, University of Extremadura, Apartado de Correos 108, 06071, Badajoz, Spain
I. Gil-Exojo
Department of Physiology, Faculty of Medicine, University of Extremadura, Apartado de Correos 108, 06071, Badajoz, Spain
A. Romero de Tejada
Department of Physiology, Faculty of Medicine, University of Extremadura, Apartado de Correos 108, 06071, Badajoz, Spain
J. E. Campillo
Department of Physiology, Faculty of Medicine, University of Extremadura, Apartado de Correos 108, 06071, Badajoz, Spain
*Corresponding author: Dr M. A. Tormo, fax +34 924 289437, email,
Rights & Permissions[Opens in a new window]


HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An inhibitor of α-amylase was isolated and purified from an extract of white kidney beans (Phaseolus vulgaris). The acute oral administration of the inhibitor (50 mg/kg body weight) to adult Wistar rats together with a starch load (2 g/kg body weight suspended in NaCl (9 g/l)) reduced the increase in glycaemia over the basal value (NaCl, 222 (SEM 49); inhibitor, 145 (SEM 16) mmol/l×180 min; P<0.05) without modifying the insulin response. On administering the inhibitor orally (50 mg/kg body weight dissolved in NaCl (9 g/l)) for 21 d to rats fed on a standard diet, a decline was observed in the glycaemia values on day 0 (NaCl, 5.53 (SEM 0.12); inhibitor, 5.25 (SEM 0.16) mmol/l) relative to those obtained on days 10 (NaCl, 5.00 (SEM 0.14); inhibitor, 4.60 (SEM 0.08) mmol/l; P<0.05) and 21 (NaCl, 5.22 (SEM 0.22); inhibitor, 4.50 (SEM 0.12) mmol/l; P<0.01) of treatment, without modifying the plasma concentration of insulin. There was found to be a significant anorexigenic action of the inhibitor; there was reduced food intake (NaCl, 23.07 (SEM 0.31); inhibitor, 19.50 (SEM 0.49) g/d; P<0.01), a reduced weight gain (NaCl, 52 (SEM 3); inhibitor, −1.33 (SEM 8.9) g/21 d; P<0.01), as well as changes in the activity of some intestinal enzymes such as maltase (NaCl, 87 (SEM 7); inhibitor, 127 (SEM 11) U/g proteins; P<0.05). The present study has shown, for the first time, that the prolonged administration of an α-amylase inhibitor reduces blood glucose levels and body-weight gain in Wistar rats.

Research Article
Copyright © The Nutrition Society 2004


Boivin, M, Zinsmeister, AR, Go, VL & DiMagno, EP (1987) Effect of a purified amylase inhibitor on carbohydrate metabolism after a mixed meal in healthy humans. Mayo Clin Proc 62, 249255.CrossRefGoogle ScholarPubMed
Bo-Linn, GW, Santa, Ana Ca, Morawski, SG & Fordtran, JS (1982) Starch blockers - their effect on calorie absorption from a high-starch meal. N Engl J Med 307, 14131416.CrossRefGoogle ScholarPubMed
Bowman, DE (1945) Amylase inhibitor of navy bean. Science 102, 358359.CrossRefGoogle Scholar
Dahlqvist, A (1964) Method for assay of intestinal disaccharidases. Anal Biochem 7, 1825.CrossRefGoogle ScholarPubMed
Jaffe, WG & Lette, CL (1968) Heat-labile growth-inhibiting factors in beans (Phaseolus vulgaris). J Nutr 94, 203210.CrossRefGoogle Scholar
Jain, NK, Boivin, M, Zinsmeister, AR, Brown, ML, Malagelada, JR & DiMagno, EP (1989) Effect of ileal perfusion of carbohydrates and amylase inhibitor on gastrointestinal hormones and emptying. Gastroenterology 96, 377387.CrossRefGoogle ScholarPubMed
Jain, NK, Boivin, M, Zinsmeister, AR & DiMagno, EP (1991) The ileum and carbohydrate-mediated feedback regulation of postprandial pancreaticobiliary secretion in normal humans. Pancreas 6, 495505.CrossRefGoogle ScholarPubMed
Kataoka, K & DiMagno, EP (1999) Effect of prolonged intraluminal alpha-amylase inhibition on eating, weight, and the small intestine of rats. Nutrition 15, 123129.CrossRefGoogle ScholarPubMed
Kotaru, M, Iwami, K, Yeh, HY & Ibuki, F (1989) In vivo action of alpha-amylase inhibitor from cranberry bean (Phaseolus vulgaris) in rat small intestine. J Nutr Sci Vitaminol (Tokyo) 35, 579588.CrossRefGoogle Scholar
Layer, P, Carlson, GL & DiMagno, EP (1985) Partially purified white bean amylase inhibitor reduces starch digestion in vitro and inactivates intraduodenal amylase in humans. Gastroenterology 88, 18951902.CrossRefGoogle ScholarPubMed
Layer, P, Rizza, RA, Zinsmeister, AR, Carlson, GL & DiMagno, EP (1986 a) Effect of a purified amylase inhibitor on carbohydrate tolerance in normal subjects and patients with diabetes mellitus. Mayo Clin Proc 61, 442447.CrossRefGoogle ScholarPubMed
Layer, P, Zinsmeister, AR & DiMagno, EP (1986 b) Effects of decreasing intraluminal amylase activity on starch digestion and postprandial gastrointestinal function in humans. Gastroenterology 91, 4148.CrossRefGoogle ScholarPubMed
Le Berre-Anton, V, Bompard-Gilles, C, Payan, F & Rouge, P (1997) Characterization and functional properties of the alpha-amylase inhibitor (alpha-AI) from kidney bean (Phaseolus vulgaris) seeds. Biochim Biophys Acta 1343, 3140.CrossRefGoogle ScholarPubMed
Liener, IE, Donatucci, DA & Tarcza, JC (1984) Starch blockers: a potential source of trypsin inhibitors and lectins. Am J Clin Nutr 39, 196200.CrossRefGoogle ScholarPubMed
Maranesi, M, Carenini, G & Gentili, P (1984) Nutritional studies on anti alpha-amylase: I) Influence on the growth rate, blood picture and biochemistry and histological parameters in rats. Acta Vitaminol Enzymol 6, 259269.Google ScholarPubMed
Marshall, JJ & Lauda, CM (1975) Purification and properties of phaseolamin, an inhibitor of alpha-amylase, from the kidney bean, Phaseolus vulgaris. J Biol Chem 250, 80308037.Google ScholarPubMed
Moreno, J, Altabella, T & Chrispeels, MJ (1990) Characterization of alpha-amylase inhibitor, a lectin like protein in the seeds of Phaseolus vulgaris. Plant Physiol 92, 703709.CrossRefGoogle ScholarPubMed
Mulimani, VH & Rudrappa, G (1994) Effect of heat treatment and germination on alpha amylase inhibitor activity in chick peas (Cicer arietinum L.). Plant Foods Hum Nutr 46, 133137.CrossRefGoogle Scholar
Puls, W & Kneup, U (1973) Influence of an amylase inhibitor (BAY d 7791) on blood glucose, serum insulin and NEFA in starch loading tests in rats, dog and man. Diabetologia 9, 97101.CrossRefGoogle Scholar
Pusztai, A (1966) The isolation of two proteins, glycoprotein I and a trypsin inhibitor, from the seeds of kidney bean (Phaseolus vulgaris). Biochem J 101, 379384.CrossRefGoogle Scholar
Pusztai, A, Grant, G, Duguid, T, Brown, DS, Peumans, WJ, Van Damme, EJ & Bardocz, S (1995) Inhibition of starch digestion by alpha-amylase inhibitor reduces the efficiency of utilization of dietary proteins and lipids and retards the growth of rats. J Nutr 125, 15541562.Google ScholarPubMed
Pusztai, A, Grant, G, Stewart, JC & Watt, WB (1988) Isolation of soybean trypsin inhibitors by affinity chromatography on anhydrotrypsin-Sepharose 4B. Anal Biochem 172, 108112.CrossRefGoogle ScholarPubMed
Royal, Decree (1988) Real Decreto 223/1988 de 14 de marzo, sobre protección de los animales utilizados para experimentación y otros fines científicos (Royal Decree 223/1988, 14 March, Principles for care and use of experimental animals). BOE 67, 85098512.Google Scholar
Rosenberg, IH (1982) Starch blockers - still no calorie-free lunch. N Engl J Med 307, 14441445.CrossRefGoogle ScholarPubMed
Wallenfels, K, Foldi, P, Nierman, H, Bender, H & Linder, D (1978) The enzymic synthesis, by transglucosylation of a homologous series of glycosidically substituted malto-oligo-saccharides, and their use as amylase substrates. Carbohydr Res 61, 359368.CrossRefGoogle Scholar
Watford, M, Lund, P & Krebs, HA (1979) Isolation and metabolic characteristics of rat and chicken enterocytes. Biochem J 178, 589596.CrossRefGoogle ScholarPubMed
Whitaker, JR, Filho, FF & Lajolo, FM (1988) Parameters involved in binding of porcine pancreatic alpha-amylase with black bean inhibitor: role of sulfhydryl groups, chloride, calcium, solvent composition and temperature. Biochimie 70, 11531161.CrossRefGoogle ScholarPubMed