Skip to main content
    • Aa
    • Aa
  • Access
  • Cited by 8
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Fallah, Neda and Ebrahimi, Soheila 2016. The Anti-Cancer Effect of Watercress (Rorripa Nasturtium Aquaticum) Extract on Breast Cancer Cells. Zahedan Journal of Research in Medical Sciences, Vol. 18, Issue. 9,

    Pinela, José Barreira, João C.M. Barros, Lillian Antonio, Amilcar L. Carvalho, Ana Maria Oliveira, M. Beatriz P.P. and Ferreira, Isabel C.F.R. 2016. Postharvest quality changes in fresh-cut watercress stored under conventional and inert gas-enriched modified atmosphere packaging. Postharvest Biology and Technology, Vol. 112, p. 55.

    Fuentes, Francisco Paredes-Gonzalez, Ximena and Kong, Ah-Ng Tony 2015. Dietary Glucosinolates Sulforaphane, Phenethyl Isothiocyanate, Indole-3-Carbinol/3,3′-Diindolylmethane: Antioxidative Stress/Inflammation, Nrf2, Epigenetics/Epigenomics and In Vivo Cancer Chemopreventive Efficacy. Current Pharmacology Reports, Vol. 1, Issue. 3, p. 179.

    Kim, Beom Seok Lee, Kyeong Jung, Hye Jin Bhattarai, Deepak and Kwon, Ho Jeong 2015. HIF-1α suppressing small molecule, LW6, inhibits cancer cell growth by binding to calcineurin b homologous protein 1. Biochemical and Biophysical Research Communications, Vol. 458, Issue. 1, p. 14.

    Gupta, Parul Kim, Bonglee Kim, Sung-Hoon and Srivastava, Sanjay K. 2014. Molecular targets of isothiocyanates in cancer: Recent advances. Molecular Nutrition & Food Research, Vol. 58, Issue. 8, p. 1685.

    Gupta, Parul Wright, Stephen E. Kim, Sung-Hoon and Srivastava, Sanjay K. 2014. Phenethyl isothiocyanate: A comprehensive review of anti-cancer mechanisms. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, Vol. 1846, Issue. 2, p. 405.

    Aras, Urvi Gandhi, Yash A. Masso-Welch, Patricia A. and Morris, Marilyn E. 2013. Chemopreventive and anti-angiogenic effects of dietary phenethyl isothiocyanate in anN-methyl nitrosourea-induced breast cancer animal model. Biopharmaceutics & Drug Disposition, Vol. 34, Issue. 2, p. 98.

    Singh, S. V. and Singh, K. 2012. Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Carcinogenesis, Vol. 33, Issue. 10, p. 1833.


In vivo modulation of 4E binding protein 1 (4E-BP1) phosphorylation by watercress: a pilot study

  • Sharifah S. Syed Alwi (a1), Breeze E. Cavell (a1), Urvi Telang (a2), Marilyn E. Morris (a2), Barbara M. Parry (a3) and Graham Packham (a1)
  • DOI:
  • Published online: 15 June 2010

Dietary intake of isothiocyanates (ITC) has been associated with reduced cancer risk. The dietary phenethyl ITC (PEITC) has previously been shown to decrease the phosphorylation of the translation regulator 4E binding protein 1 (4E-BP1). Decreased 4E-BP1 phosphorylation has been linked to the inhibition of cancer cell survival and decreased activity of the transcription factor hypoxia-inducible factor (HIF), a key positive regulator of angiogenesis, and may therefore contribute to potential anti-cancer effects of PEITC. In the present study, we have investigated the in vitro and in vivo effects of watercress, which is a rich source of PEITC. We first demonstrated that, similar to PEITC, crude watercress extracts inhibited cancer cell growth and HIF activity in vitro. To examine the effects of dietary intake of watercress, we obtained plasma and peripheral blood mononuclear cells following the ingestion of an 80 g portion of watercress from healthy participants who had previously been treated for breast cancer. Analysis of PEITC in plasma samples from nine participants demonstrated a mean maximum plasma concentration of 297 nm following the ingestion of watercress. Flow cytometric analysis of 4E-BP1 phosphorylation in peripheral blood cells from four participants demonstrated significantly reduced 4E-BP1 phosphorylation at 6 and 8 h following the ingestion of watercress. Although further investigations with larger numbers of participants are required to confirm these findings, this pilot study suggests that flow cytometry may be a suitable approach to measure changes in 4E-BP1 phosphorylation following the ingestion of watercress, and that dietary intake of watercress may be sufficient to modulate this potential anti-cancer pathway.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      In vivo modulation of 4E binding protein 1 (4E-BP1) phosphorylation by watercress: a pilot study
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      In vivo modulation of 4E binding protein 1 (4E-BP1) phosphorylation by watercress: a pilot study
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      In vivo modulation of 4E binding protein 1 (4E-BP1) phosphorylation by watercress: a pilot study
      Available formats
Corresponding author
*Corresponding author: Professor G. Packham, fax +44 23 8079 5152, email
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1JV Higdon , B Delage , DE Williams , (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55, 224236.

3Y Zhang (2004) Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action. Mutat Res 555, 173190.

4P Brennan , CC Hsu , N Moullan , (2005) Effect of cruciferous vegetables on lung cancer in patients stratified by genetic status: a mendelian randomisation approach. Lancet 366, 15581560.

5SJ London , JM Yuan , FL Chung , (2000) Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai, China. Lancet 356, 724729.

8SE Steck & JR Hebert (2009) GST polymorphism and excretion of heterocyclic aromatic amine and isothiocyanate metabolites after Brassica consumption. Environ Mol Mutagen 50, 238246.

9JD Clarke , RH Dashwood & E Ho (2008) Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269, 291304.

10SS Hecht (2000) Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev 32, 395411.

11Y Zhang (2000) Role of glutathione in the accumulation of anticarcinogenic isothiocyanates and their glutathione conjugates by murine hepatoma cells. Carcinogenesis 21, 11751182.

12K Xu & PJ Thornalley (2001) Involvement of glutathione metabolism in the cytotoxicity of the phenethyl isothiocyanate and its cysteine conjugate to human leukaemia cells in vitro. Biochem Pharmacol 61, 165177.

13D Trachootham , Y Zhou , H Zhang , (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10, 241252.

14L Mi , X Wang , S Govind , (2007) The role of protein binding in induction of apoptosis by phenethyl isothiocyanate and sulforaphane in human non-small lung cancer cells. Cancer Res 67, 64096416.

15AT Dinkova-Kostova , WD Holtzclaw , RN Cole , (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99, 1190811913.

16YS Keum , ED Owuor , BR Kim , (2003) Involvement of Nrf2 and JNK1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent phenethyl isothiocyanate (PEITC). Pharm Res 20, 13511356.

17M McMahon , K Itoh , M Yamamoto , (2003) Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem 278, 2159221600.

18C Xu , X Yuan , Z Pan , (2006) Mechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol Cancer Ther 5, 19181926.

19L Mi , Z Xiao , BL Hood , (2008) Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem 283, 2213622146.

20JV Cross , JM Rady , FW Foss , (2009) Nutrient isothiocyanates covalently modify and inhibit the inflammatory cytokine macrophage migration inhibitory factor (MIF). Biochem J 423, 315321.

21 KK Brown , FH Blaikie , RA Smith , (2009) Direct modification of the pro-inflammatory cytokine MIF by dietary isothiocyanates. J Biol Chem 284, 3242532433.

22JV Cross , FW Foss , JM Rady , (2007) The isothiocyanate class of bioactive nutrients covalently inhibit the MEKK1 protein kinase. BMC Cancer 7, 183.

23MC Myzak , PA Karplus , FL Chung , (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64, 57675774.

24XH Wang , BE Cavell , SS Syed Alwi , (2009) Inhibition of hypoxia inducible factor by phenethyl isothiocyanate. Biochem Pharmacol 78, 261272.

25EB Rankin & AJ Giaccia (2008) The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 15, 678685.

26A Weidemann & RS Johnson (2008) Biology of HIF-1alpha. Cell Death Differ 15, 621627.

27D Xiao & SV Singh (2007) Phenethyl isothiocyanate inhibits angiogenesis in vitro and ex vivo. Cancer Res 67, 22392246.

28E Bertl , H Bartsch & C Gerhauser (2006) Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Mol Cancer Ther 5, 575585.

29SJ Jackson , KW Singletary & RC Venema (2007) Sulforaphane suppresses angiogenesis and disrupts endothelial mitotic progression and microtubule polymerization. Vascul Pharmacol 46, 7784.

30P Carmeliet & RK Jain (2000) Angiogenesis in cancer and other diseases. Nature 407, 249257.

31J Hu , J Straub , D Xiao , (2007) Phenethyl isothiocyanate, a cancer chemopreventive constituent of cruciferous vegetables, inhibits cap-dependent translation by regulating the level and phosphorylation of 4E-BP1. Cancer Res 67, 35693573.

32M Yee Koh , TR Spivak-Kroizman & G Powis (2008) HIF-1 regulation: not so easy come, easy go. Trends Biochem Sci 33, 526534.

33Y Ji & ME Morris (2003) Determination of phenethyl isothiocyanate in human plasma and urine by ammonia derivatization and liquid chromatography–tandem mass spectrometry. Anal Biochem 323, 3947.

37T Hofmann , A Kuhnert , A Schubert , (2009) Modulation of detoxification enzymes by watercress: in vitro and in vivo investigations in human peripheral blood cells. Eur J Nutr 48, 483491.

38PO Krutzik , JM Irish , GP Nolan , (2004) Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol 110, 206221.

42CG Proud (2007) Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 403, 217234.

43SA Dames , JM Mulet , K Rathgeb-Szabo , (2005) The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J Biol Chem 280, 2055820564.

44A Salmeen & D Barford (2005) Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid Redox Signal 7, 560577.

45G Engelen-Eigles , G Holden , JD Cohen , (2006) The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). J Agric Food Chem 54, 328334.

46DA Kopsell , TC Barickman , CE Sams , (2007) Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.). J Agric Food Chem 55, 1062810634.

47JM Estrela , A Ortega & E Obrador (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43, 143181.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *