Skip to main content Accessibility help
×
×
Home

Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria

  • C.J Newbold (a1), S. M. El Hassan (a1), J Wang* (a1), M.E Ortega (a1) and R.J Wallace (a1)...
Abstract

Samples and extracts of foliage from African multipurpose trees were screened for their effects on rumen protozoa and bacteria with a view to predicting their safety as feed supplements and for identifying species with potential antiprotozoal activity. The species tested were Acacia aneura, Charnaecytisus palmensis, Brachychiton populneum, Flindersia maculosa, Sesbania sesban, Leucaena leucocephala and Vernonia amyedalina. Antimicrobial effects were mild except for S. sesban, which was highly toxic to rumen protozoa in vitro, and A. aneura, which was toxic to rumen bacteria. The antiprotozoal factor in S. sesban was apparently associated with the fraction of the plant containing saponins. When S. sesban was fed to sheep, protozoal numbers fell by 60 % after 4 d, but the population recovered after a further 10 d. In vitro experiments demonstrated that washed protozoa from later times were no more resistant to S. sesban than on initial exposure, suggesting that other micro-organisms, probably the bacteria, adapted to detoxify the antiprotozoal agent. Thus S. sesban may be useful in suppressing protozoa and thereby improving protein flow from the rumen, but only if the bacterial metabolism of the antiprotozoal factor can be avoided.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria
      Available formats
      ×
Copyright
References
Hide All
Akin, D. E. (1982). Forage cell wall degradation and p-coumaric, ferulic and sinapic acids. Agronomy Journal 74, 424428.
Akin, D. E. & Rigsby, L. L. (1987). Mixed fungal populations and lignocellulosic tissue degradation in the bovine rumen. Applied and Environmental Microbiology 53, 19871995.
Beever, D. E. & Siddons, R. C. (1986). Digestion and metabolism in the grazing ruminant. In Control of Digestion and Metabolism in Ruminants, pp. 479497 [Milligan, L. P., Grovum, W. L. & Dobson, A., editors]. New Jersey: Prentice-Hall.
Bird, S. H., Hill, M. K. & Leng, R. A. (1979). The effects of defaunation of the rumen on the growth of lambs on low-protein high-energy diets. British Journal of Nutrition 42, 8187.
Bird, S. H. & Leng, R. A. (1978). The effect of defaunation of the rumen on the growth of cattle on low-protein high-energy diets. British Journal of Nutrition 40, 163167.
Bonsi, M. L. K., Osuji, P. O. & Tuah, A. K. (1995). Effect of supplementing teff straw with different levels of leucaena or sesbania leaves on the degradabilities of teff straw, sesbania, leucena, tagasaste and veronia and on certain rumen and blood metabolities in Ethiopian menz sheep. Animal Feed Science and Technology 52, 101129.
Borneman, W. A., Akin, D. E. & Van Eseltine, W. P. (1986). Effect of phenolic monomers on ruminal bacteria. Applied and Environmental Microbiology 52, 13311339.
Cheeke, P. R. & Shull, L. R. (1985). Natural Toxicants in Feeds and Poisonous Plants. Westport, CT: Avi Publishing Co. Inc.
Chesson, A., Stewart, C. S. & Wallace, R. J. (1982). Influence of plant acids on growth and cellulolytic activity of rumen bacteria. Applied and Environmental Microbiology 44, 597603.
Coleman, G. S. (1978). Rumen entodiniomorphid protozoa. In Methods of Cultivating Parasites In Vitro, pp. 3954 [Taylor, A. E. R. & Baker, J. R., editors]. London: Academic Press.
Deshpande, S. S., Cheryan, M. & Salunke, D. K. (1986). Tannin analysis of food products. CRC Critical Reviews in Food Science and Nutrition 24, 401449.
D'Mello, J. P. F. (1992). Chemical constraints to the use of tropical legumes in animal nutrition. Animal Feed Science and Technology 38, 237261.
Eadie, J. M., Mann, S. O. & Oxford, A. E. (1956). A survey of physically active organic infusoricidal compounds and their soluble derivatives with special reference to their action on the rumem microbial system. Journal of General Microbiology 14, 122133.
El Hassan, S. M. (1994). Yeast culture and multipurpose fodder trees as feed supplements for ruminants. PhD Thesis, University of Aberdeen.
Feeny, P. (1970). Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51, 565581.
Garrido, A., Gomez-Cabrera, A., Guerro, J. E. & Van der Meer, J. M. (1991). Effect of treatment with polyvinylpyrrolidone and polyethylene glycol on faba bean tannins. Animal Feed Science and Technology 35, 199203.
Genstat 5 Committee (1987). Genstat 5 Users' Manual. Oxford: Oxford University Press.
Goodall, S. & Byers, F. M. (1978). Automated micro method for enzymatic L(+) and D(-) lactic acid determinations in biological fluid containing cellular extracts. Analytical Biochemistry 89, 8086.
Grummer, R. R., Staples, C. R. & Davis, C. L. (1983). Effect of defaunation on ruminal volatile fatty acids and pH of steers fed on a diet high in dried whole whey. Journal of Dairy Science 66, 17381741.
Headon, D. R., Buggle, K., Nelson, A. & Killeen, G. (1991). Glycofractions of the yucca plant and their role in ammonia control. In Biotechnology in the Feed Industry, pp. 95108 [Lyons, T. P., editor] Nicholasville, KY: Alltech Inc.
Hobson, P. N. (1969). Rumen bacteria. Methods in Microbiology 3B, 133159.
Hoogenraad, N. J. & Hird, F. J. R. (1970). Factors concerned in the lysis of bacteria in the alimentary tract of sheep. Journal of General Microbiology 62, 261264.
Hoogenraad, N. J., Hird, F. J. R., Holmes, I. & Mills, N. F. (1967). Bacteriophages in rumen contents of sheep. Journal of General Virology 1, 575576.
Leng, R. A., Gill, M., Kempton, T. J., Rowe, J. B., Nolan, J. B., Stachiw, S. J. & Preston, T. R. (1981). Kinetics of large ciliate protozoa in the rumen of cattle given sugar cane diets. British Journal of Nutrition 46, 371384.
Lindsay, J. R. & Hogan, J. P. (1972). Digestion of two legumes and rumen bacterial growth in defaunated sheep. Australian Journal of Agricultural Research 23, 321330.
Lowry, J. B. (1990). Toxic factors and problems: methods of alleviating them in animals. In Shrubs and Tree Fodders for Farm Animals. Proceedings of a Workshop held in Denpsar, Indonesia, 24–29 July 1989, pp. 7690 [Devendra, C., editor]. Lanham, MD: Unipub, Division of Bemam Associates.
Lowry, O. H., Roseborough, N. J., Farr, A. L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.
Lu, C. D. & Jorgensen, N. A. (1987). Alfalfa saponins affect site and extent of nutrient digestion in ruminants. Journal of Nutrition 117, 919927.
Mann, S. O. (1968). An improved method for determining cellulolytic activity in anaerobic bacteria. Journal of Applied Bacteriology 31, 241244.
Martin, S. A. & Akin, D. E. (1988). Effect of phenolic monomers on the growth and β-glucosidase activity Bacteroides ruminicola and on the carboxymethyl cellulase, β-glucosidase and xylanase activities of Bacteroides succinogenes. Applied and Environmental Microbiology 54, 30193022.
Mehrez, A. Z. & Ørskov, E. R. (1977). A study of the artificial fibre bag technique for determining the disgestibility of feeds in the rumen. Journal of Agricultural Science, Cambridge 88, 241244.
Navas-Camacho, A., Laredo, M. A., Cuesta, A., Ortega, O. & Romero, M. (1994). Evaluation of tropical trees with high or medium saponin content as dietary alternative to eliminate ciliate protozoa from the rumen. Proceedings of the Society of Nutrition Physiology 3, 204 Abstr.
Newbold, C. J., Wallace, R. J. & McKain, N. (1990). Effects of the ionophore tetronasin on nitrogen metabolism by ruminal microorganisms in vitro. Journal of Animal Science 68, 11031109.
Newbold, C. J., Williams, A. G. & Chamberlain, D. G. (1987). The in vitro metabolism of D, L-lactic acid by rumen micro-organisms. Journal of the Science of Food and Agriculture 38, 919.
Nolan, J. V. & Stachiw, S. (1979). Fermentation and nitrogen dynamics in Merino sheep given a low-qualityroughage diet. British Journal of Nutrition 42, 6379.
Reed, J. D. (1986). Relationship among soluble phenolics, insoluble proanthocyanidins and fiber in East African browse species. Journal of Range Management 39, 57.
Reed, J. D., Soller, H. & Woodward, A. (1990). Fodder tree and straw diets for sheep: intake, growth, digestibility and effect of phenolics on nitrogen utilization. Animal Feed Science and Technology 30, 3950.
Robinson, J. P. & Hungate, R. E. (1973). Acholeplasma bactoclasticum sp.n., an anaerobic mycoplasma from the bovine rumen. International Journal of Systematic Bacteriology 23, 171181.
Snedecor, G. N. & Cochran, G. C. (1976). Statistical Methods. Ames, IA: Iowa State University Press.
Stern, M. D. & Hinkson, R. S. (1974). Effect of defamation and faunation on intraruminal factors. Journal of Animal Science 39, 253 Abstr.
Stewart, C. S. & Duncan, S. H. (1985). The effect of avoparcin on cellulolytic bacteria of the ovine rumen. Journal of General Microbiology 131, 427435.
Thalib, A., Widiawati, Y., Hamid, H., Suherman, D. & Sabrani, M. (1995). The effects of saponins from Sapindus rarak fruit on rumen microbes and host animal growth. Annales de Zootechnie 44, 161 Abstr.
Ushida, K., Jouany, J. P. & Demeyer, D. (1990). Effects of presence or absence of rumen protozoa on the efficiency of utilization of concentrate and fibrous feeds. In Physiological Aspects of Digestion and Metabolism in Ruminants, pp. 625654 [Tsuda, T., Sasaki, Y. & Kawashima, R. editors]. Tokyo: Academic Press.
Valdez, F. R., Bush, L. J., Goetsch, A. L. & Owens, F. N. (1986). Effect of steroidal sapogenins on ruminal fermentation and on production of lactating dairy cows. Journal of Dairy Science 69, 15681575.
Varel, V. H. & Jung, H. J. G. (1986). Influence of forage phenolics on ruminal fibrolytic bacteria and in vitro fiber degradation. Applied and Environmental Microbiology 52, 275280.
Wall, M. E., Krider, M. M., Rothman, E. S. & Eddy, C. R. (1952). Steroidal sapogenins. I. Extraction, isolation and identification. Journal of Biological Chemistry 198, 543553.
Wallace, R. J. (1983). Hydrolysis of 14C-labelled proteins by rumen micro-organisms and by proteolytic enzymes prepared from rumen bacteria. British Journal of Nutrition 50, 345355.
Wallace, R. J., Arthaud, L. & Newbold, C. J. (1994). Influence of Yucca shigidera extract on ruminal ammonia concentrations and ruminal microorganisms. Applied and Environmental Microbiology 60, 17621767.
Wallace, R. J. & McPherson, C. A. (1987). Factors affecting the rate of breakdown of bacterial protein in rumen fluid. British Journal of Nutrition 58, 313323.
Wallace, R. J. & Newbold, C. J. (1991). Effects of bentonite on fermentation in the rumen simulation technique (Rusitec) and on ciliate protozoa. Journal of Agricultural Science, Cambridge 116, 163168.
Wallace, R. J. & West, A. A. (1982). Adenosine 5' triphosphate and adenylate energy charge in sheep digesta. Journal of Agricultural Science, Cambridge 98, 523528.
Warner, A. C. I. (1962). Some factors influencing the rumen microbial population. Journal of General Microbiology 25, 129146.
Whitehead, R., Cooke, G. H. & Chapman, B. T. (1967). Problems associated with the continuous monitoring of ammoniacal nitrogen in river water. Automation in Analytical Chemistry 2, 377380.
Williams, A. G. & Coleman, G. S. (1992). The Rumen Protozoa. London: Springer-Verlag.
Woodward, A. & Reed, J. D. (1989). The influence of polyphenolics on the nutritive value of browse: a summary of research conducted at ILCA. ILCA Bulletin Vol. 35, pp. 211. International Livestock Centre for Africa, Addis Ababa, Ethiopia.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed