Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-10T07:18:37.907Z Has data issue: false hasContentIssue false

Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria

Published online by Cambridge University Press:  09 March 2007

C.J Newbold
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB
S. M. El Hassan
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB
J Wang*
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB
M.E Ortega
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB
R.J Wallace
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Samples and extracts of foliage from African multipurpose trees were screened for their effects on rumen protozoa and bacteria with a view to predicting their safety as feed supplements and for identifying species with potential antiprotozoal activity. The species tested were Acacia aneura, Charnaecytisus palmensis, Brachychiton populneum, Flindersia maculosa, Sesbania sesban, Leucaena leucocephala and Vernonia amyedalina. Antimicrobial effects were mild except for S. sesban, which was highly toxic to rumen protozoa in vitro, and A. aneura, which was toxic to rumen bacteria. The antiprotozoal factor in S. sesban was apparently associated with the fraction of the plant containing saponins. When S. sesban was fed to sheep, protozoal numbers fell by 60 % after 4 d, but the population recovered after a further 10 d. In vitro experiments demonstrated that washed protozoa from later times were no more resistant to S. sesban than on initial exposure, suggesting that other micro-organisms, probably the bacteria, adapted to detoxify the antiprotozoal agent. Thus S. sesban may be useful in suppressing protozoa and thereby improving protein flow from the rumen, but only if the bacterial metabolism of the antiprotozoal factor can be avoided.

Type
Animal Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Akin, D. E. (1982). Forage cell wall degradation and p-coumaric, ferulic and sinapic acids. Agronomy Journal 74, 424428.Google Scholar
Akin, D. E. & Rigsby, L. L. (1987). Mixed fungal populations and lignocellulosic tissue degradation in the bovine rumen. Applied and Environmental Microbiology 53, 19871995.Google Scholar
Beever, D. E. & Siddons, R. C. (1986). Digestion and metabolism in the grazing ruminant. In Control of Digestion and Metabolism in Ruminants, pp. 479497 [Milligan, L. P., Grovum, W. L. & Dobson, A., editors]. New Jersey: Prentice-Hall.Google Scholar
Bird, S. H., Hill, M. K. & Leng, R. A. (1979). The effects of defaunation of the rumen on the growth of lambs on low-protein high-energy diets. British Journal of Nutrition 42, 8187.CrossRefGoogle ScholarPubMed
Bird, S. H. & Leng, R. A. (1978). The effect of defaunation of the rumen on the growth of cattle on low-protein high-energy diets. British Journal of Nutrition 40, 163167.Google Scholar
Bonsi, M. L. K., Osuji, P. O. & Tuah, A. K. (1995). Effect of supplementing teff straw with different levels of leucaena or sesbania leaves on the degradabilities of teff straw, sesbania, leucena, tagasaste and veronia and on certain rumen and blood metabolities in Ethiopian menz sheep. Animal Feed Science and Technology 52, 101129.Google Scholar
Borneman, W. A., Akin, D. E. & Van Eseltine, W. P. (1986). Effect of phenolic monomers on ruminal bacteria. Applied and Environmental Microbiology 52, 13311339.Google Scholar
Cheeke, P. R. & Shull, L. R. (1985). Natural Toxicants in Feeds and Poisonous Plants. Westport, CT: Avi Publishing Co. Inc.Google Scholar
Chesson, A., Stewart, C. S. & Wallace, R. J. (1982). Influence of plant acids on growth and cellulolytic activity of rumen bacteria. Applied and Environmental Microbiology 44, 597603.CrossRefGoogle ScholarPubMed
Coleman, G. S. (1978). Rumen entodiniomorphid protozoa. In Methods of Cultivating Parasites In Vitro, pp. 3954 [Taylor, A. E. R. & Baker, J. R., editors]. London: Academic Press.Google Scholar
Deshpande, S. S., Cheryan, M. & Salunke, D. K. (1986). Tannin analysis of food products. CRC Critical Reviews in Food Science and Nutrition 24, 401449.CrossRefGoogle ScholarPubMed
D'Mello, J. P. F. (1992). Chemical constraints to the use of tropical legumes in animal nutrition. Animal Feed Science and Technology 38, 237261.CrossRefGoogle Scholar
Eadie, J. M., Mann, S. O. & Oxford, A. E. (1956). A survey of physically active organic infusoricidal compounds and their soluble derivatives with special reference to their action on the rumem microbial system. Journal of General Microbiology 14, 122133.Google Scholar
El Hassan, S. M. (1994). Yeast culture and multipurpose fodder trees as feed supplements for ruminants. PhD Thesis, University of Aberdeen.Google Scholar
Feeny, P. (1970). Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51, 565581.Google Scholar
Garrido, A., Gomez-Cabrera, A., Guerro, J. E. & Van der Meer, J. M. (1991). Effect of treatment with polyvinylpyrrolidone and polyethylene glycol on faba bean tannins. Animal Feed Science and Technology 35, 199203.CrossRefGoogle Scholar
Genstat 5 Committee (1987). Genstat 5 Users' Manual. Oxford: Oxford University Press.Google Scholar
Goodall, S. & Byers, F. M. (1978). Automated micro method for enzymatic L(+) and D(-) lactic acid determinations in biological fluid containing cellular extracts. Analytical Biochemistry 89, 8086.CrossRefGoogle Scholar
Grummer, R. R., Staples, C. R. & Davis, C. L. (1983). Effect of defaunation on ruminal volatile fatty acids and pH of steers fed on a diet high in dried whole whey. Journal of Dairy Science 66, 17381741.CrossRefGoogle Scholar
Headon, D. R., Buggle, K., Nelson, A. & Killeen, G. (1991). Glycofractions of the yucca plant and their role in ammonia control. In Biotechnology in the Feed Industry, pp. 95108 [Lyons, T. P., editor] Nicholasville, KY: Alltech Inc.Google Scholar
Hobson, P. N. (1969). Rumen bacteria. Methods in Microbiology 3B, 133159.Google Scholar
Hoogenraad, N. J. & Hird, F. J. R. (1970). Factors concerned in the lysis of bacteria in the alimentary tract of sheep. Journal of General Microbiology 62, 261264.CrossRefGoogle ScholarPubMed
Hoogenraad, N. J., Hird, F. J. R., Holmes, I. & Mills, N. F. (1967). Bacteriophages in rumen contents of sheep. Journal of General Virology 1, 575576.Google Scholar
Leng, R. A., Gill, M., Kempton, T. J., Rowe, J. B., Nolan, J. B., Stachiw, S. J. & Preston, T. R. (1981). Kinetics of large ciliate protozoa in the rumen of cattle given sugar cane diets. British Journal of Nutrition 46, 371384.Google Scholar
Lindsay, J. R. & Hogan, J. P. (1972). Digestion of two legumes and rumen bacterial growth in defaunated sheep. Australian Journal of Agricultural Research 23, 321330.Google Scholar
Lowry, J. B. (1990). Toxic factors and problems: methods of alleviating them in animals. In Shrubs and Tree Fodders for Farm Animals. Proceedings of a Workshop held in Denpsar, Indonesia, 24–29 July 1989, pp. 7690 [Devendra, C., editor]. Lanham, MD: Unipub, Division of Bemam Associates.Google Scholar
Lowry, O. H., Roseborough, N. J., Farr, A. L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.Google Scholar
Lu, C. D. & Jorgensen, N. A. (1987). Alfalfa saponins affect site and extent of nutrient digestion in ruminants. Journal of Nutrition 117, 919927.Google Scholar
Mann, S. O. (1968). An improved method for determining cellulolytic activity in anaerobic bacteria. Journal of Applied Bacteriology 31, 241244.Google Scholar
Martin, S. A. & Akin, D. E. (1988). Effect of phenolic monomers on the growth and β-glucosidase activity Bacteroides ruminicola and on the carboxymethyl cellulase, β-glucosidase and xylanase activities of Bacteroides succinogenes. Applied and Environmental Microbiology 54, 30193022.CrossRefGoogle ScholarPubMed
Mehrez, A. Z. & Ørskov, E. R. (1977). A study of the artificial fibre bag technique for determining the disgestibility of feeds in the rumen. Journal of Agricultural Science, Cambridge 88, 241244.Google Scholar
Navas-Camacho, A., Laredo, M. A., Cuesta, A., Ortega, O. & Romero, M. (1994). Evaluation of tropical trees with high or medium saponin content as dietary alternative to eliminate ciliate protozoa from the rumen. Proceedings of the Society of Nutrition Physiology 3, 204 Abstr.Google Scholar
Newbold, C. J., Wallace, R. J. & McKain, N. (1990). Effects of the ionophore tetronasin on nitrogen metabolism by ruminal microorganisms in vitro. Journal of Animal Science 68, 11031109.Google Scholar
Newbold, C. J., Williams, A. G. & Chamberlain, D. G. (1987). The in vitro metabolism of D, L-lactic acid by rumen micro-organisms. Journal of the Science of Food and Agriculture 38, 919.Google Scholar
Nolan, J. V. & Stachiw, S. (1979). Fermentation and nitrogen dynamics in Merino sheep given a low-qualityroughage diet. British Journal of Nutrition 42, 6379.Google Scholar
Reed, J. D. (1986). Relationship among soluble phenolics, insoluble proanthocyanidins and fiber in East African browse species. Journal of Range Management 39, 57.Google Scholar
Reed, J. D., Soller, H. & Woodward, A. (1990). Fodder tree and straw diets for sheep: intake, growth, digestibility and effect of phenolics on nitrogen utilization. Animal Feed Science and Technology 30, 3950.CrossRefGoogle Scholar
Robinson, J. P. & Hungate, R. E. (1973). Acholeplasma bactoclasticum sp.n., an anaerobic mycoplasma from the bovine rumen. International Journal of Systematic Bacteriology 23, 171181.Google Scholar
Snedecor, G. N. & Cochran, G. C. (1976). Statistical Methods. Ames, IA: Iowa State University Press.Google Scholar
Stern, M. D. & Hinkson, R. S. (1974). Effect of defamation and faunation on intraruminal factors. Journal of Animal Science 39, 253 Abstr.Google Scholar
Stewart, C. S. & Duncan, S. H. (1985). The effect of avoparcin on cellulolytic bacteria of the ovine rumen. Journal of General Microbiology 131, 427435.Google Scholar
Thalib, A., Widiawati, Y., Hamid, H., Suherman, D. & Sabrani, M. (1995). The effects of saponins from Sapindus rarak fruit on rumen microbes and host animal growth. Annales de Zootechnie 44, 161 Abstr.Google Scholar
Ushida, K., Jouany, J. P. & Demeyer, D. (1990). Effects of presence or absence of rumen protozoa on the efficiency of utilization of concentrate and fibrous feeds. In Physiological Aspects of Digestion and Metabolism in Ruminants, pp. 625654 [Tsuda, T., Sasaki, Y. & Kawashima, R. editors]. Tokyo: Academic Press.Google Scholar
Valdez, F. R., Bush, L. J., Goetsch, A. L. & Owens, F. N. (1986). Effect of steroidal sapogenins on ruminal fermentation and on production of lactating dairy cows. Journal of Dairy Science 69, 15681575.CrossRefGoogle ScholarPubMed
Varel, V. H. & Jung, H. J. G. (1986). Influence of forage phenolics on ruminal fibrolytic bacteria and in vitro fiber degradation. Applied and Environmental Microbiology 52, 275280.Google Scholar
Wall, M. E., Krider, M. M., Rothman, E. S. & Eddy, C. R. (1952). Steroidal sapogenins. I. Extraction, isolation and identification. Journal of Biological Chemistry 198, 543553.Google Scholar
Wallace, R. J. (1983). Hydrolysis of 14C-labelled proteins by rumen micro-organisms and by proteolytic enzymes prepared from rumen bacteria. British Journal of Nutrition 50, 345355.Google Scholar
Wallace, R. J., Arthaud, L. & Newbold, C. J. (1994). Influence of Yucca shigidera extract on ruminal ammonia concentrations and ruminal microorganisms. Applied and Environmental Microbiology 60, 17621767.Google Scholar
Wallace, R. J. & McPherson, C. A. (1987). Factors affecting the rate of breakdown of bacterial protein in rumen fluid. British Journal of Nutrition 58, 313323.Google Scholar
Wallace, R. J. & Newbold, C. J. (1991). Effects of bentonite on fermentation in the rumen simulation technique (Rusitec) and on ciliate protozoa. Journal of Agricultural Science, Cambridge 116, 163168.Google Scholar
Wallace, R. J. & West, A. A. (1982). Adenosine 5' triphosphate and adenylate energy charge in sheep digesta. Journal of Agricultural Science, Cambridge 98, 523528.Google Scholar
Warner, A. C. I. (1962). Some factors influencing the rumen microbial population. Journal of General Microbiology 25, 129146.Google Scholar
Whitehead, R., Cooke, G. H. & Chapman, B. T. (1967). Problems associated with the continuous monitoring of ammoniacal nitrogen in river water. Automation in Analytical Chemistry 2, 377380.Google Scholar
Williams, A. G. & Coleman, G. S. (1992). The Rumen Protozoa. London: Springer-Verlag.Google Scholar
Woodward, A. & Reed, J. D. (1989). The influence of polyphenolics on the nutritive value of browse: a summary of research conducted at ILCA. ILCA Bulletin Vol. 35, pp. 211. International Livestock Centre for Africa, Addis Ababa, Ethiopia.Google Scholar