Skip to main content Accessibility help

Leucine promotes differentiation of porcine myoblasts through the protein kinase B (Akt)/Forkhead box O1 signalling pathway

  • Shurun Zhang (a1), Xiaoling Chen (a1), Zhiqing Huang (a1), Daiwen Chen (a1), Bing Yu (a1), Hong Chen (a2), Junqiu Luo (a1), Jun He (a1), Ping Zheng (a1) and Jie Yu (a1)...


Leucine, one of the branched-chain amino acids, is the only amino acid to regulate protein turnover in skeletal muscle. Leucine not only increases muscle protein synthesis, but also decreases muscle protein degradation. It is well documented that leucine plays a positive role in differentiation of murine muscle cells. However, the role of leucine on porcine myoblast differentiation and its mechanism remains unclear. In this study, porcine myoblasts were induced to differentiate with differentiation medium containing different concentrations of leucine, and wortmannin was used to interdict the activity of protein kinase B (Akt). We found that leucine increased the number of myosin heavy chain-positive cells and creatine kinase activity. Moreover, leucine increased the mRNA and protein levels of myogenin and myogenic determining factor (MyoD). In addition, leucine increased the levels of phosphorylated Akt/Akt and phosphorylated Forkhead box O1 (P-FoxO1)/FoxO1, as well as decreased the protein level of FoxO1. However, wortmannin, a specific repressor of PI3K/Akt signalling pathway, attenuated the positive role of leucine on porcine myoblast differentiation. Our results suggest that leucine promotes porcine myoblast differentiation through the Akt/FoxO1 signalling pathway.


Corresponding author

* Corresponding author: Z. Huang, fax +86 28 86290976, email


Hide All

These authors contributed equally to this work.



Hide All
1. Buckingham, M (2006) Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev 16, 525532.
2. Sabourin, LA & Rudnicki, MA (2000) The molecular regulation of myogenesis. Clin Genet 57, 1625.
3. Rudnicki, MA & Jaenisch, R (1995) The MyoD family of transcription factors and skeletal myogenesis. Bioessays 17, 203209.
4. Sassoon, DA (1993) Myogenic regulatory factors: dissecting their role and regulation during vertebrate embryogenesis. Dev Biol 156, 1123.
5. Arnold, HH & Winter, B (1998) Muscle differentiation: more complexity to the network of myogenic regulators. Curr Opin Genet Dev 8, 539544.
6. Perry, RL & Rudnick, MA (2000) Molecular mechanisms regulating myogenic determination and differentiation. Front Biosci 5, D750D767.
7. Florini, JR, Ewton, DZ & Coolican, SA (1996) Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 17, 481517.
8. Kornasio, R, Riederer, I, Butler-Browne, G, et al. (2009) β-hydroxy-β-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways. Biochim Biophys Acta 1793, 755763.
9. Tureckova, J, Wilson, EM, Cappalonga, JL, et al. (2001) Insulin-like growth factor-mediated muscle differentiation: collaboration between phosphatidylinositol 3-kinase-Akt-signaling pathways and myogenin. J Biol Chem 276, 3926439270.
10. Rotwein, P & Wilson, EM (2009) Distinct actions of Akt1 and Akt2 in skeletal muscle differentiation. J Cell Physiol 219, 503511.
11. Woo, DH, Yun, SJ, Kim, EK, et al. (2012) Regulation of skeletal muscle differentiation by Akt. J Life Sci 22, 447455.
12. Yuan, Y, Shi, XE, Liu, YG, et al. (2011) FoxO1 regulates muscle fiber-type specification and inhibits calcineurin signaling during C2C12 myoblast differentiation. Mol Cell Biochem 348, 7787.
13. Desantiago, S, Torres, N, Suryawan, A, et al. (1998) Regulation of branched-chain amino acid metabolism in the lactating rat. J Nutr 128, 11651171.
14. Shimomura, Y, Honda, T, Shiraki, M, et al. (2006) Branched-chain amino acid catabolism in exercise and liver disease. J Nutr 136, 250S253S.
15. Wagenmakers, AJ (1998) Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exerc Sport Sci Rev 26, 287314.
16. Anthony, JC, Anthony, TG, Kimball, SR, et al. (2000) Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formation. J Nutr 130, 139145.
17. Hernandez-Garcia, AD, Columbus, DA, Manjarin, R, et al. (2016) Leucine supplementation stimulates protein synthesis and reduces degradation signal activation in muscle of newborn pigs during acute endotoxemia. Am J Physiol Endocrinol Metab 311, E791E801.
18. Hong, SO & Layman, DK (1984) Effects of leucine on in vitro protein synthesis and degradation in rat skeletal muscles. J Nutr 114, 12041212.
19. Wang, XJ, Yang, X, Wang, RX, et al. (2016) Leucine alleviates dexamethasone-induced suppression of muscle protein synthesis via synergy involvement of mTOR and AMPK pathways. Biosci Rep 36, e00346.
20. Mitch, WE & Clark, AS (1984) Specificity of the effects of leucine and its metabolites on protein degradation in skeletal muscle. Biochem J 222, 579586.
21. Averous, J, Gabillard, JC, Seiliez, I, et al. (2011) Leucine limitation regulates Myf5 and MyoD expression and inhibits myoblast differentiation. Exp Cell Res 318, 217227.
22. Dai, JM, Yu, MX, Shen, ZY, et al. (2015) Leucine promotes proliferation and differentiation of primary preterm rat satellite cells in part through mTORC1 signaling pathway. Nutrients 7, 33873400.
23. Sissom, EK, Reinhardt, CD & Johnson, BJ (2006) Melengestrol acetate alters muscle cell proliferation in heifers and steers. J Anim Sci 84, 29502958.
24. Chen, XL, Huang, ZQ, Chen, DW, et al. (2014) Role of microRNA-27a in myoblast differentiation. Cell Biol Int 38, 266271.
25. Zhang, SR, Chen, XL, Huang, ZQ, et al. (2017) Effects of microRNA-27a on myogenin expression and Akt/FoxO1 signal pathway during porcine myoblast differentiation. Anim Biotechnol (epublication ahead of print version 11 August 2017).
26. Ribeiro, CB, Christofoletti, DC, Pezolato, VA, et al. (2015) Leucine minimizes denervation-induced skeletal muscle atrophy of rats through Akt/mTOR signaling pathways. Front Physiol 6, 73.
27. Brunet, A, Bonni, A, Zigmond, MJ, et al. (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857868.
28. Tran, H, Brunet, A, Griffith, EC, et al. (2003) The many forks in FOXO’s road. Sciences STKE: Signal Transduction Knowledge. Environment 2003, RE5.
29. Bois, PRJ & Grosveld, GC (2003) FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts. EMBO J 22, 11471157.
30. Hakuno, F, Yamauchi, Y, Kaneko, G, et al. (2011) Constitutive expression of insulin receptor substrate (IRS)-1 inhibits myogenic differentiation through nuclear exclusion of Foxo1 in L6 myoblasts. PLoS ONE 6, e25655.
31. Accili, D & Arden, KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421426.
32. Wu, AL, Kim, JH, Zhang, C, et al. (2008) Forkhead box protein O1 negatively regulates skeletal myocyte differentiation through degradation of mammalian target of rapamycin pathway components. Endocrinology 149, 14071414.
33. Xu, M, Chen, XL, Chen, DW, et al. (2017) FoxO1: a novel insight into its molecular mechanisms in the regulation of skeletal muscle differentiation and fiber type specification. Oncotarget 8, 1066210674.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed