Skip to main content
×
×
Home

Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring

  • R. O. Benatti (a1), A. M. Melo (a1), F. O. Borges (a1), L. M. Ignacio-Souza (a2), L. A. P. Simino (a1), M. Milanski (a1), L. A. Velloso (a3), M. A. Torsoni (a1) and A. S. Torsoni (a1)...
Abstract

Maternal consumption of a high-fat diet (HFD) during pregnancy and lactation is closely related to hepatic lipid accumulation, insulin resistance and increased serum cytokine levels in offspring and into their adulthood. MicroRNA (miRNA) have been implicated in cholesterol biosynthesis and fatty acid metabolism. We evaluated the modulation of hepatic fatty acid synthesis (de novo), β-oxidation pathways, and miRNA-122 (miR-122) and miRNA-370 (miR-370) expression in recently weaned offspring (day 28) of mouse dams fed a HFD (HFD-O) or a standard chow (SC-O) during pregnancy and lactation. Compared with SC-O mice, HFD-O mice weighed more, had a larger adipose tissue mass and were more intolerant to glucose and insulin (P< 0·05). HFD-O mice also presented more levels of serum cholesterol, TAG, NEFA and hepatic IκB kinase and c-Jun N-terminal kinase phosphorylation compared with SC-O mice (P< 0·05). Protein levels of fatty acid synthase, acetyl-CoA carboxylase and 3-hydroxy-3-methylglutaryl-CoA reductase were similar in HFD-O and SC-O mice, whereas expression levels of SCD1 mRNA and protein were more abundant in HFD-O mice than in SC-O mice (P< 0·05). Interestingly, mRNA expression levels of the β-oxidation-related genes ACADVL and CPT1 were decreased in HFD-O mice (P< 0·05). Furthermore, the expression of miR-122 was reduced but that of miR-370 was increased in HFD-O mice compared with that in SC-O mice (P< 0·05). Changes in hepatic lipid metabolism were accompanied by increased mRNA content of AGPAT1 and TAG deposition in HFD-O mice (P< 0·05). Taken together, the present results strongly suggest that maternal consumption of a HFD affects the early lipid metabolism of offspring by modulating the expression of hepatic β-oxidation-related genes and miRNA that can contribute to metabolic disturbances in adult life.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: A. S. Torsoni, fax +55 19 3701 6680, email adriana.torsoni@fca.unicamp.br
References
Hide All
1 Danielzik, S, Langnäse, K, Mast, M, et al. (2002) Impact of parental BMI on the manifestation of overweight 5–7 year old children. Eur J Nutr 41, 132138.
2 Boney, CM, Verma, A, Tucker, R, et al. (2005) Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115, e290e296.
3 Catalano, PM, Farrell, K, Thomas, A, et al. (2009) Perinatal risk factors for childhood obesity and metabolic dysregulation. Am J Clin Nutr 90, 13031313.
4 Challier, JC, Basu, S, Bintein, T, et al. (2008) Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta 29, 274281.
5 Elahi, MM, Cagampang, FR, Mukhtar, D, et al. (2009) Long-term maternal high-fat feeding from weaning through pregnancy and lactation predisposes offspring to hypertension, raised plasma lipids and fatty liver in mice. Br J Nutr 102, 514519.
6 Ashino, NG, Saito, KN, Souza, FD, et al. (2012) Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. J Nutr Biochem 23, 341348.
7 Shankar, K, Zhong, Y, Kang, P, et al. (2011) Maternal obesity promotes a proinflammatory signature in rat uterus and blastocyst. Endocrinology 152, 41584170.
8 Qureshi, K & Abrams, GA (2007) Metabolic liver disease of obesity and role of adipose tissue in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 13, 35403553.
9 Stanton, MC, Chen, SC, Jackson, JV, et al. (2011) Inflammatory signals shift from adipose to liver during high fat feeding and influence the development of steatohepatitis in mice. J Inflamm (Lond) 8, 8.
10 McCurdy, CE, Bishop, JM, Williams, SM, et al. (2009) Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest 119, 323335.
11 Heerwagen, MJ, Stewart, MS, de la Houssaye, BA, et al. (2013) Transgenic increase in n-3/n-6 fatty acid ratio reduces maternal obesity-associated inflammation and limits adverse developmental programming in mice. PLOS ONE 8, e67791.
12 Postic, C & Girard, J (2008) The role of the lipogenic pathway in the development of hepatic steatosis. Diabetes Metab 34, 643648.
13 Bouanane, S, Merzouk, H, Benkalfat, NB, et al. (2010) Hepatic and very low-density lipoprotein fatty acids in obese offspring of overfed dams. Metabolism 59, 17011709.
14 Waterland, RA (2005) Does nutrition during infancy and early childhood contribute to later obesity via metabolic imprinting of epigenetic gene regulatory mechanisms? Nestle Nutr Workshop Ser Pediatr Program 56, 157171, discussion 171–154.
15 Sullivan, EL & Grove, KL (2010) Metabolic imprinting in obesity. Forum Nutr 63, 186194.
16 Bartel, DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281297.
17 Li, ZY, Xi, Y, Zhu, WN, et al. (2011) Positive regulation of hepatic miR-122 expression by HNF4α. J Hepatol 55, 602611.
18 Yang, YM, Seo, SY, Kim, TH, et al. (2012) Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid. Hepatology 56, 22092220.
19 Iliopoulos, D, Drosatos, K, Hiyama, Y, et al. (2010) MicroRNA-370 controls the expression of microRNA-122 and Cpt1α and affects lipid metabolism. J Lipid Res 51, 15131523.
20 Dell, RB, Holleran, S & Ramakrishnan, R (2002) Sample size determination. ILAR J 43, 207213.
21 Carr, TP, Andresen, CJ & Rudel, LL (1993) Enzymatic determination of triglyceride, free cholesterol, and total cholesterol in tissue lipid extracts. Clin Biochem 26, 3942.
22 Newberry, EP, Xie, Y, Kennedy, S, et al. (2003) Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid-binding protein gene. J Biol Chem 278, 5166451672.
23 Bonora, E, Zavaroni, I, Alpi, O, et al. (1987) Relationship between blood pressure and plasma insulin in non-obese and obese non-diabetic subjects. Diabetologia 30, 719723.
24 Stenseth, NC, Viljugrein, H, Saitoh, T, et al. (2003) Seasonality, density dependence, and population cycles in Hokkaido voles. Proc Natl Acad Sci U S A 100, 1147811483.
25 Shoelson, SE, Lee, J & Yuan, M (2003) Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. Int J Obes Relat Metab Disord 27, Suppl. 3, S49S52.
26 Cnop, M (2008) Fatty acids and glucolipotoxicity in the pathogenesis of type 2 diabetes. Biochem Soc Trans 36, 348352.
27 Araújo, EP, Torsoni, MA & Velloso, LA (2010) Hypothalamic inflammation and obesity. Vitam Horm 82, 129143.
28 Donath, MY & Shoelson, SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11, 98107.
29 Gregor, MF & Hotamisligil, GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29, 415445.
30 Horng, T & Hotamisligil, GS (2011) Linking the inflammasome to obesity-related disease. Nat Med 17, 164165.
31 Velloso, LA & Schwartz, MW (2011) Altered hypothalamic function in diet-induced obesity. Int J Obes (Lond) 35, 14551465.
32 Levin, BE (2010) Interaction of perinatal and pre-pubertal factors with genetic predisposition in the development of neural pathways involved in the regulation of energy homeostasis. Brain Res 1350, 1017.
33 Barbuio, R, Milanski, M, Bertolo, MB, et al. (2007) Infliximab reverses steatosis and improves insulin signal transduction in liver of rats fed a high-fat diet. J Endocrinol 194, 539550.
34 Cintra, DE, Pauli, JR, Araújo, EP, et al. (2008) Interleukin-10 is a protective factor against diet-induced insulin resistance in liver. J Hepatol 48, 628637.
35 Wiedemann, MS, Wueest, S, Item, F, et al. (2013) Adipose tissue inflammation contributes to short-term high-fat diet-induced hepatic insulin resistance. Am J Physiol Endocrinol Metab 305, E388E395.
36 Turner, N, Kowalski, GM, Leslie, SJ, et al. (2013) Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 56, 16381648.
37 Kraegen, EW & Cooney, GJ (2008) Free fatty acids and skeletal muscle insulin resistance. Curr Opin Lipidol 19, 235241.
38 Samuel, VT & Shulman, GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852871.
39 Farese, RV Jr, Zechner, R, Newgard, CB, et al. (2012) The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance. Cell Metab 15, 570573.
40 Brown, MS & Goldstein, JL (2008) Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 7, 9596.
41 Jiang, G, Li, Z, Liu, F, et al. (2005) Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1. J Clin Invest 115, 10301038.
42 Yokoyama, S, Hosoi, T & Ozawa, K (2012) Stearoyl-CoA desaturase 1 (SCD1) is a key factor mediating diabetes in MyD88-deficient mice. Gene 497, 340343.
43 Hodson, L & Fielding, BA (2013) Stearoyl-CoA desaturase: rogue or innocent bystander? Prog Lipid Res 52, 1542.
44 Takeuchi, K & Reue, K (2009) Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab 296, E1195E1209.
45 Hsu, SH, Wang, B, Kota, J, et al. (2012) Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 122, 28712883.
46 Yu, H, Bi, Y, Ma, W, et al. (2010) Long-term effects of high lipid and high energy diet on serum lipid, brain fatty acid composition, and memory and learning ability in mice. Int J Dev Neurosci 28, 271276.
47 Silber, GH, Hachey, DL, Schanler, RJ, et al. (1988) Manipulation of maternal diet to alter fatty acid composition of human milk intended for premature infants. Am J Clin Nutr 47, 810814.
48 Priego, T, Sánchez, J, García, AP, et al. (2013) Maternal dietary fat affects milk fatty acid profile and impacts on weight gain and thermogenic capacity of suckling rats. Lipids 48, 481495.
49 Lewis, GF, Carpentier, A, Adeli, K, et al. (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23, 201229.
50 Ferré, P & Foufelle, F (2010) Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 12, Suppl. 2, 8392.
51 Donnelly, KL, Smith, CI, Schwarzenberg, SJ, et al. (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115, 13431351.
52 Esau, C, Davis, S, Murray, SF, et al. (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3, 8798.
53 Li, S, Chen, X, Zhang, H, et al. (2009) Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res 50, 17561765.
54 Whittaker, R, Loy, PA, Sisman, E, et al. (2010) Identification of microRNAs that control lipid droplet formation and growth in hepatocytes via high-content screening. J Biomol Screen 15, 798805.
55 Rayner, KJ, Sheedy, FJ, Esau, CC, et al. (2011) Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 121, 29212931.
56 Aranda, JF, Madrigal-Matute, J, Rotllan, N, et al. (2013) MicroRNA modulation of lipid metabolism and oxidative stress in cardiometabolic diseases. Free Radic Biol Med 64, 3139.
57 Tsai, WC, Hsu, SD, Hsu, CS, et al. (2012) MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 122, 28842897.
58 Krützfeldt, J, Rajewsky, N, Braich, R, et al. (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685689.
59 Elmén, J, Lindow, M, Schütz, S, et al. (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452, 896899.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed