Skip to main content Accessibility help

Nuts, metabolic syndrome and diabetes

  • Cyril W. C. Kendall (a1) (a2) (a3), Andrea R. Josse (a4), Amin Esfahani (a1) (a2) and David J. A. Jenkins (a1) (a2)


The ability of nuts to improve the blood lipid profile and reduce the risk of CHD is now well established. The interest that health effects of nuts have gained recently has brought the possible benefits of consuming nuts, such as improvement in the conditions of the metabolic syndrome, and their potential to prevent and control diabetes into focus. Results from cohort studies have associated nut consumption with a reduced risk of developing diabetes and CVD. However, few randomised controlled trials have assessed the effect of nuts on diabetes control, and those that have been undertaken have shown improvements in blood lipids but not in the glycaemic control. Diabetes agencies are increasingly recognising the importance of controlling postprandial glycaemia fluctuations. Acute feeding studies indicate that nuts have minimal effects on rising postprandial blood glucose levels when eaten alone, and diminish the postprandial glycaemic response when consumed with high-glycaemic index carbohydrate foods in both normoglycaemic and type 2 diabetic individuals. Nuts have a healthy nutritional profile, high in MUFA and PUFA, are a good source of vegetable protein and are rich in fibre, vitamins and minerals. Incorporation of nuts in the diet may therefore improve the overall nutritional quality of the diet. While more research is required to establish the ability of nuts to improve glycaemic control in the long run, early data indicate that the inclusion of nuts in the diets of individuals with diabetes and the metabolic syndrome is warranted, in view of their potential to reduce CHD risk.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Nuts, metabolic syndrome and diabetes
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Nuts, metabolic syndrome and diabetes
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Nuts, metabolic syndrome and diabetes
      Available formats


Corresponding author

*Corresponding author: Cyril W. C. Kendall, fax +1 416 978 5310, email


Hide All
1International Diabetes Federation (2006) The IDF Consensus Worldwide Definition of the Metabolic Syndrome. Brussels: International Diabetes Federation.
2Pradhan, A (2007) Obesity, metabolic syndrome, and type 2 diabetes: inflammatory basis of glucose metabolic disorders. Nutr Rev 65, S152S156.
3Shaw, JE, Sicree, RA & Zimmet, PZ (2009) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract (Epublication ahead of print version).
4Barrett-Connor, E & Wingard, DL (1983) Sex differential in ischemic heart disease mortality in diabetics: a prospective population-based study. Am J Epidemiol 118, 489496.
5Pan, WH, Cedres, LB, Liu, K, et al. (1986) Relationship of clinical diabetes and asymptomatic hyperglycemia to risk of coronary heart disease mortality in men and women. Am J Epidemiol 123, 504516.
6Adeghate, E, Schattner, P & Dunn, E (2006) An update on the etiology and epidemiology of diabetes mellitus. Ann N Y Acad Sci 1084, 129.
7Kannel, WB & McGee, DL (1979) Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care 2, 120126.
8Shichiri, M, Kishikawa, H, Ohkubo, Y, et al. (2000) Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients. Diabetes Care 23, Suppl. 2, B21B29.
9Stratton, IM, Adler, AI, Neil, HA, et al. (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321, 405412.
10Gaede, P, Vedel, P, Larsen, N, et al. (2003) Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 348, 383393.
11Laukkanen, JA, Laaksonen, DE, Niskanen, L, et al. (2004) Metabolic syndrome and the risk of prostate cancer in Finnish men: a population-based study. Cancer Epidemiol Biomarkers Prev 13, 16461650.
12American Diabetes Association (2007) Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care 30, Suppl. 1, S48S65.
13Giovannucci, E (2007) Metabolic syndrome, hyperinsulinemia, and colon cancer: a review. Am J Clin Nutr 86, s836s842.
14Xue, F & Michels, KB (2007) Diabetes, metabolic syndrome, and breast cancer: a review of the current evidence. Am J Clin Nutr 86, s823s835.
15Shaffer, EA (2006) Gallstone disease: epidemiology of gallbladder stone disease. Best Pract Res Clin Gastroenterol 20, 981996.
16Pan, XR, Li, GW, Hu, YH, et al. (1997) Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 20, 537544.
17Tuomilehto, J, Lindstrom, J, Eriksson, JG, et al. (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344, 13431350.
18Knowler, WC, Barrett-Connor, E, Fowler, SE, et al. (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346, 393403.
19Hu, FB, Manson, JE, Stampfer, MJ, et al. (2001) Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 345, 790797.
20Alberti, KG, Zimmet, P & Shaw, J (2006) Metabolic syndrome – a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 23, 469480.
21Phillips, KM, Ruggio, DM & Ashraf-Khorassani, M (2005) Phytosterol composition of nuts and seeds commonly consumed in the United States. J Agric Food Chem 53, 94369445.
22Segura, R, Javierre, C, Lizarraga, MA, et al. (2006) Other relevant components of nuts: phytosterols, folate and minerals. Br J Nutr 96, Suppl. 2, S36S44.
23US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory, (accessed 12 January 2010).
24Kris-Etherton, PM, Hu, FB, E, Ros, et al. (2008) The role of tree nuts and peanuts in the prevention of coronary heart disease: multiple potential mechanisms. J Nutr 138, 1746S1751S.
25Kris-Etherton, PM, Zhao, G, Binkoski, AE, et al. (2001) The effects of nuts on coronary heart disease risk. Nutr Rev 59, 103111.
26Griel, AE & Kris-Etherton, PM (2006) Tree nuts and the lipid profile: a review of clinical studies. Br J Nutr 96, Suppl. 2, S68S78.
27Ros, E (2009) Nuts and novel biomarkers of cardiovascular disease. Am J Clin Nutr 89, 1649S1656S.
28Estruch, R, Martinez-Gonzalez, MA, Corella, D, et al. (2006) Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med 145, 111.
29Jenkins, DJ, Kendall, CW, Marchie, A, et al. (2002) Dose response of almonds on coronary heart disease risk factors: blood lipids, oxidized low-density lipoproteins, lipoprotein(a), homocysteine, and pulmonary nitric oxide: a randomized, controlled, crossover trial. Circulation 106, 13271332.
30Jenkins, DJ, Kendall, CW, Josse, AR, et al. (2006) Almonds decrease postprandial glycemia, insulinemia, and oxidative damage in healthy individuals. J Nutr 136, 29872992.
31Jiang, R, Jacobs, DR Jr, Mayer-Davis, E, et al. (2006) Nut and seed consumption and inflammatory markers in the multi-ethnic study of atherosclerosis. Am J Epidemiol 163, 222231.
32Mukuddem-Petersen, J, Oosthuizen, W & Jerling, JC (2005) A systematic review of the effects of nuts on blood lipid profiles in humans. J Nutr 135, 20822089.
33Phung, OJ, Makanji, SS, White, CM, et al. (2009) Almonds have a neutral effect on serum lipid profiles: a meta-analysis of randomized trials. J Am Diet Assoc 109, 865873.
34Banel, DK & Hu, FB (2009) Effects of walnut consumption on blood lipids and other cardiovascular risk factors: a meta-analysis and systematic review. Am J Clin Nutr 90, 5663.
35Sheridan, MJ, Cooper, JN, Erario, M, et al. (2007) Pistachio nut consumption and serum lipid levels. J Am Coll Nutr 26, 141148.
36Kocyigit, A, Koylu, AA & Keles, H (2006) Effects of pistachio nuts consumption on plasma lipid profile and oxidative status in healthy volunteers. Nutr Metab Cardiovasc Dis 16, 202209.
37Aksoy, N, Aksoy, M, Bagci, C, et al. (2007) Pistachio intake increases high density lipoprotein levels and inhibits low-density lipoprotein oxidation in rats. Tohoku J Exp Med 212, 4348.
38Ternus, M, McMahon, K, Lapsley, K, et al. (2006) Qualified health claim for nuts and heart disease prevention: development of consumer-friendly language. Nutr Today 41, 6266.
39Jiang, R, Manson, JE, Stampfer, MJ, et al. (2002) Nut and peanut butter consumption and risk of type 2 diabetes in women. JAMA 288, 25542560.
40Parker, ED, Harnack, LJ & Folsom, AR (2003) Nut consumption and risk of type 2 diabetes. JAMA 290, 38–39; author reply 39–40.
41Hu, FB, Stampfer, MJ, Manson, JE, et al. (1998) Frequent nut consumption and risk of coronary heart disease in women: prospective cohort study. BMJ 317, 13411345.
42Blomhoff, R, Carlsen, MH, Andersen, LF, et al. (2006) Health benefits of nuts: potential role of antioxidants. Br J Nutr 96, Suppl. 2, S52S60.
43Jenkins, DJ, Wolever, TM, Taylor, RH, et al. (1981) Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 34, 362366.
44Jenkins, DJ, Kendall, CW, McKeown-Eyssen, G, et al. (2008) Effect of a low-glycemic index or a high-cereal fiber diet on type 2 diabetes: a randomized trial. JAMA 300, 27422753.
45International Diabetes Federation (2009) Guideline for Management of Postmeal Glucose. Brussels: International Diabetes Federation.
46Josse, AR, Kendall, CW, Augustin, LS, et al. (2007) Almonds and postprandial glycemia – a dose–response study. Metabolism 56, 400404.
47Garg, A, Bonanome, A, Grundy, SM, et al. (1988) Comparison of a high-carbohydrate diet with a high-monounsaturated-fat diet in patients with non-insulin-dependent diabetes mellitus. N Engl J Med 319, 829834.
48Jonsson, T, Granfeldt, Y, Ahren, B, et al. (2009) Beneficial effects of a paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study. Cardiovasc Diabetol 8, 35.
49Li, TY, Brennan, AM, Wedick, NM, et al. (2009) Regular consumption of nuts is associated with a lower risk of cardiovascular disease in women with type 2 diabetes. J Nutr 139, 13331338.
50Lovejoy, JC, Most, MM, Lefevre, M, et al. (2002) Effect of diets enriched in almonds on insulin action and serum lipids in adults with normal glucose tolerance or type 2 diabetes. Am J Clin Nutr 76, 10001006.
51Tapsell, LC, Gillen, LJ, Patch, CS, et al. (2004) Including walnuts in a low-fat/modified-fat diet improves HDL cholesterol-to-total cholesterol ratios in patients with type 2 diabetes. Diabetes Care 27, 27772783.
52Ma, Y, Njike, VY, Millet, J, et al. (2010) Effects of walnut consumption on endothelial function in type 2 diabetic subjects: a randomized controlled crossover trial. Diabetes Care 33, 227232.
53Scott, LW, Balasubramanyam, A, Kimball, KT, et al. (2003) Long-term, randomized clinical trial of two diets in the metabolic syndrome and type 2 diabetes. Diabetes Care 26, 24812482.
54Tapsell, LC, Batterham, MJ, Teuss, G, et al. (2009) Long-term effects of increased dietary polyunsaturated fat from walnuts on metabolic parameters in type II diabetes. Eur J Clin Nutr 63, 10081015.
55Mukuddem-Petersen, J, Stonehouse Oosthuizen, W, Jerling, JC, et al. (2007) Effects of a high walnut and high cashew nut diet on selected markers of the metabolic syndrome: a controlled feeding trial. Br J Nutr 97, 11441153.
56Casas-Agustench, P, Lopez-Uriarte, P, Bullo, M, et al. (2009) Effects of one serving of mixed nuts on serum lipids, insulin resistance and inflammatory markers in patients with the metabolic syndrome. Nutr Metab Cardiovasc Dis (Epublication ahead of print version 21 December 2009).
57Pradhan, AD & Ridker, PM (2002) Do atherosclerosis and type 2 diabetes share a common inflammatory basis? Eur Heart J 23, 831834.
58Jenkins, DJ, Kendall, CW, Marchie, A, et al. (2003) Effects of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein. JAMA 290, 502510.
59Larsson, SC & Wolk, A (2007) Magnesium intake and risk of type 2 diabetes: a meta-analysis. J Intern Med 262, 208214.
60Nissen, SE & Wolski, K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356, 24572471.
61Gerstein, HC, Miller, ME, Byington, RP, et al. (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358, 25452559.
62Patel, A, MacMahon, S, Chalmers, J, et al. (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358, 25602572.
63Bes-Rastrollo, M, Wedick, NM, Martinez-Gonzalez, MA, et al. (2009) Prospective study of nut consumption, long-term weight change, and obesity risk in women. Am J Clin Nutr 89, 19131919.
64Wien, MA, Sabaté, JM, Iklé, DN, et al. (2003) Almonds vs complex carbohydrates in a weight reduction program. Int J Obes Relat Metab Disord 27, 13651372.
65Ellis, PR, Kendall, CW, Ren, Y, et al. (2004) Role of cell walls in the bioaccessibility of lipids in almond seeds. Am J Clin Nutr 80, 604613.
66Sacks, FM, Bray, GA, Carey, VJ, et al. (2009) Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 360, 859873.
67Jenkins, DJ, Wong, JM, Kendall, CW, et al. (2009) The effect of a plant-based low-carbohydrate (“Eco-Atkins”) diet on body weight and blood lipid concentrations in hyperlipidemic subjects. Arch Intern Med 169, 10461054.
68Dansinger, ML, Gleason, JA, Griffith, JL, et al. (2005) Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA 293, 4353.


Related content

Powered by UNSILO

Nuts, metabolic syndrome and diabetes

  • Cyril W. C. Kendall (a1) (a2) (a3), Andrea R. Josse (a4), Amin Esfahani (a1) (a2) and David J. A. Jenkins (a1) (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.