Skip to main content Accessibility help
×
Home

Red wine raises plasma HDL and preserves long-chain polyunsaturated fatty acids in rat kidney and erythrocytes

  • Jaulia Araya (a1), Ramón Rodrigo (a2), Myriam Orellana (a2) and Gonzalo Rivera (a2)

Abstract

The effects of red wine and ethanol on plasma lipoproteins and the fatty acid composition of kidney lipids and erythrocytes phospholipids were studied. Lipid peroxidation is one of the main deleterious effects of oxidant attack on biomolecules, due to the disruption of the structural integrity of membranes. The vulnerability of the kidney to oxidative damage has been partly attributed to its high content of long-chain polyunsaturated fatty acids. Antioxidants, such as flavonoids, would be a means of reducing the risk of oxidative damage to membranes. Nutritional sources rich in antioxidants, including those provided by wine, are expected to attenuate the effects of oxidative challenges. Adult rats were fed red wine rich in flavonols, ethanol (125 ml/l), or alcohol-free red wine. The control group drank water. After 10 weeks, blood samples served to measure plasma lipoproteins and antioxidant capacity. Kidney lipids and erythrocyte phospholipids were extracted. The samples were assayed by GLC. Energy intake did not differ between all the groups, but the weight gain of the ethanol group was less than the other three groups. Blood HDL and triacylglycerols were increased by both ethanol and red wine. Ethanol decreased arachidonic and docosahexaenoic acids in both kidney lipids and erythrocyte phospholipids, as compared with either water, red wine or alcohol-free red wine groups. These results indicate that non-alcoholic components of red wine could contribute to avoiding the unfavourable effects of ethanol on plasma lipoproteins, kidney lipids and membrane erythrocyte phospholipids.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Red wine raises plasma HDL and preserves long-chain polyunsaturated fatty acids in rat kidney and erythrocytes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Red wine raises plasma HDL and preserves long-chain polyunsaturated fatty acids in rat kidney and erythrocytes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Red wine raises plasma HDL and preserves long-chain polyunsaturated fatty acids in rat kidney and erythrocytes
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor Dr Julia Araya, fax +56 2 7355581, email jaraya@machi.med.uchile.cl

References

Hide All
Ayaori, M, Ishikawa, T, Yoshida, H, Suzukawa, M, Nishiwaki, M, Shige, H, Ito, T, Nakajima, K, Higashi, K, Yonemura, A & Nakamura, H (1997) Beneficial effects of alcohol withdrawal on LDL particle size distribution and oxidative susceptibility in subjects with alcohol-induced hypertriglyceridemia. Arteriosclerosis, Thrombosis, and Vascular Biology 17, 25402547.
Baliga, R, Ueda, N, Walker, PD & Shah, SV (1997) Oxidant mechanisms in toxic acute renal failure. American Journal of Kidney Diseases 29, 465477.
Basaravajappa, BS, Cooper, TB & Hungund, BL (1999) Effect of chronic ethanol exposure on mouse brain arachidonic acid specific phospholipase A2. Journal of Neurochemistry 72, 522528.
Baud, L & Ardaillou, R (1993) Involvement of reactive oxygen species in kidney damage. British Medical Bulletin 49, 621629.
Benzie, IFF & Strain, JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry 239, 7076.
Bligh, EG & Dyer, WJ (1959) A rapid method of total lipid extraction. Canadian Journal of Biochemistry and Physiology 37, 911917.
Branchi, A, Rovellini, A, Tomella, C, Sciariada, L, Torri, A, Molgora, M & Sommariva, D (1997) Association of alcohol consumption with HDL subpopulations defined by apolipoprotein A-I and apolipoprotein A-II content. European Journal of Clinical Nutrition 51, 362365.
Brink, NG, Bonnichsen, R & Theorell, H (1954) A modified method for the enzymatic microdetermination of ethanol. Acta Pharmacologica et Toxicologica 10, 223236.
Crozier, A, Jensen, E, Lean, MEJ & McDonald, MS (1997) Quantitative analysis of flavonoids by reversed phase high performance liquid chromatography. Journal of Chromatography 761, 315321.
Durak, I, Burak Cimen, MY, Büyükkoçak, S, Kaçmaz, M & Öztürk, S (1999) The effect of red wine on blood antioxidant potential. Current Medical Research and Opinion 15, 208213.
Duthie, GG, Pedersen, MW, Gardner, PT, Morrice, PC, Jenkinson, AM, McPhail, DB & Steele, GM (1998) The effect of whisky and wine consumption on total phenol content and antioxidant capacity of plasma from healthy volunteers. European Journal of Clinical Nutrition 52, 733736.
Fiorillo, C, Oliveiro, C, Rizzuti, G, Nediani, C, Pacini, A & Nassi, P (1998) Oxidative stress and antioxidant defenses in renal patients receiving regular haemodialysis. Clinical Chemistry and Laboratory Medicine 36, 149153.
Frémont, L, Belguendouz, L & Delpal, S (1999) Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids. Life Sciences 64, 25112521.
Frohlich, JJ (1996) Effects of alcohol on plasma lipoprotein metabolism. Clinica Chimica Acta 246, 3949.
Fryer, MJ (1997) Vitamin E may slow kidney failure owing to oxidative stress. Redox Report 3, 259261.
Gröne, EF, Walli, AK, Gröne, HJ, Miller, B & Seidel, D (1994) The role of lipids in nephrosclerosis and glomerulosclerosis. Atherosclerosis 107, 113.
Hollman, PC & Katan, MB (1997) Absorption, metabolism and health effects of dietary flavonoids in man. Biomedicine & Pharmacotherapy 51, 305310.
Huertas, JR, Palomino, N, Ochoa, JJ, Quiles, JL, Ramírez-Tortosa, MC, Battino, M, Robles, R & Mataix, J (1998) Lipid peroxidation and antioxidants in erythrocyte membranes of full-term and preterm newborns. Biofactors 8, 133137.
Hungund, BL, Zheng, Z, Lin, L & Barkai, AI (1994) Ganglioside GM1 reduces ethanol induced phospholipase A2 activity in synaptosomal preparations from mice. Neurochemistry International 25, 321325.
Kubo, K, Saito, M, Tadokoro, T & Maekawa, A (1997) Changes in susceptibility of tissues to lipid peroxidation after ingestion on various levels of docohexaenoic acid and vitamin E. British Journal of Nutrition 78, 655669.
Kuhlmann, MK, Horsh, E, Burkhardt, G, Wagner, M & Kohler, H (1998) Reduction of cysplatin toxicity in cultured renal tubular cells by the bioflavonoid quercetin. Archives of Toxicology 72, 536540.
Lee, HS, Jeong, JY, Kim, BC, Kim, YS, Zhang, YZ & Chung, HK (1997) Dietary antioxidant inhibits lipoprotein oxidation and renal injury in experimental focal segmental glomerulosclerosis. Kidney International 51, 11511159.
McDonald, MS, Hughes, M, Burns, J, Lean, MEJ, Matthews, D & Crozier, A (1998) Survey of the free and conjugated myricetin and quercetin content of red wines of different geographical origins. Journal of Agricultural and Food Chemistry 46, 368375.
Manach, C, Morand, C, Crespy, V, Demigné, C, Texier, O, Régérat, F & Rémésy, C (1998) Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS Letters 426, 331336.
Nigdikar, SV, Williams, NR, Griffin, BA & Howard, AN (1998) Consumption of red wine polyphenols reduces the susceptibility of low-density lipoproteins to oxidation in vivo. American Journal of Clinical Nutrition 68, 258265.
Okita, M, Suzuki, K, Sasagawa, T, Yamamoto, J, Miyamoto, A, Wakabayashi, H & Watanabe, A (1997) Effect of arachidonate on lipid metabolism in ethanol-treated rats fed with lard. Journal of Nutritional Science and Vitaminology 43, 311326.
Orellana, M, Valdés, E, Fernández, J & Rodrigo, R (1998) Effects of chronic ethanol consumption on extramitochondrial fatty acid oxidation and ethanol metabolism by rat kidney. General Pharmacology 30, 719723.
Parthasarathy, S, Barnett, J & Fong, LG (1990) High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochimica et Biophysica Acta 1044, 275283.
Peuchant, E, Delmas-Beauvieux, MC, Duborg, L, Thomas, MJ, Perromat, A, Aparicio, M, Clerc, M & Combe, C (1997) Antioxidant effects of a supplemented very low protein diet in chronic renal failure. Free Radical Biology and Medicine 22, 313320.
Pietta, P, Simonetti, P, Gardana, C, Brusamolino, A, Morazzoni, P & Bombardelli, E (1998) Relationship between rate and extent of catechin absorption and plasma oxidant status. Biochemistry and Molecular Biology International 46, 895903.
Pownall, HJ, Ballantyne, CM, Kimball, KT, Simpson, SL, Yeshurun, D & Gotto, AM Jr (1999) Effect of moderate consumption on hypertriglyceridemia: a study in the fasting state. Archives of Internal Medicine 159, 981987.
Rifici, VA, Stephan, EM, Schneider, SH & Khachadurian, AK (1999) Red wine inhibits the cell-mediated oxidation of LDL and HDL. Journal of the American College of Nutrition 18, 137143.
Rodrigo, R, Thielemann, L, Olea, M, Muñoz, P, Cereceda, M & Orellana, M (1998) Effect of ethanol ingestion on renal regulation of water and electrolytes. Archives of Medical Research 29, 209218.
Roig, R, Cascón, E, Arola, L, Bladé, C & Salvadó, MJ (1999) Moderate red wine consumption protects the rat against oxidation in vivo. Life Sciences 64, 15171524.
Scheuer, H, Gwinner, W, Hohbach, J, Gröne, EF, Brandes, RP, Malle, E, Olbricht, CJ, Walli, AK & Gröne, HJ (2000) Oxidant stress in hyperlipidemia-induced renal damage. American Journal of Physiology 278, F63F74.
Serafini, M, Malani, G & Ferro-Luzzi, A (1998) Alcohol-free red wine enhances plasma antioxidant capacity in humans. Journal of Nutrition 128, 10031007.
Soleas, GJ, Diamandis, EP & Goldberg, DM (1997) Wine as a biological fluid: history, production, and role in disease prevention. Journal of Clinical Laboratory Analysis 11, 287313.
Shimoi, K, Shen, B, Toyokuni, S, Mochizuki, R, Furugori, M & Kinae, N (1997) Protection by alpha G-rutin, a water-soluble antioxidant flavonoid, against renal damage in mice treated with ferric nitrilotriacetate. Japanese Journal of Cancer Research 88, 453460.
Steck, TL, Weinstein, RS, Straus, JH & Wallach, DF (1970) Inside-out red cell membrane vesicles: preparation and purification. Science 168, 255257.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed