Skip to main content Accessibility help
×
Home

The relationship between birth weight and insulin resistance in childhood

  • Jesuana O. Lemos (a1), Patricia H. C. Rondó (a1), Joilane A. Pereira (a1), Renata G. Oliveira (a1), Maria B. S. Freire (a2) and Patricia B. Sonsin (a1)...

Abstract

Chronic diseases that are typical of adulthood may originate in intra-uterine life through inadequate fetal development. The present epidemiological cohort study of 506 healthy children aged 5–8 years evaluated the relationship between birth weight and insulin resistance in an age group that has been assessed in few similar studies. Insulin concentration was determined by chemiluminescence and insulin resistance by the homeostasis model assessment (HOMA). Blood glucose, total cholesterol and fractions (LDL cholesterol and HDL cholesterol) and TAG concentrations were determined by automated enzymatic methods. Linear regression analysis investigated the relationship between birth weight (assessed as a continuous variable and in three categories: small for gestational age, SGA; adequate for gestational age and large for gestational age) and the HOMA index, using backward stepwise selection and biological models to explain the causal pathway of the relationship. There were negative associations between birth weight (P < 0·001), SGA (P = 0·027) and the HOMA index, and a positive association between waist circumference (P < 0·001) and the HOMA index. Considering the significant associations between birth weight and waist circumference (P < 0·001) and waist circumference and insulin resistance (P < 0·001), we can probably suspect that lower birth weight is a common cause of higher waist circumference and insulin resistance. In summary, the results of the present study showed increased insulin resistance in apparently healthy, young children, who had lower weight at birth and higher measurements of waist circumference. There is a need to develop public health policies that adopt preventive measures to promote adequate maternal-fetal and child development and enable early diagnosis of metabolic abnormalities.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The relationship between birth weight and insulin resistance in childhood
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The relationship between birth weight and insulin resistance in childhood
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The relationship between birth weight and insulin resistance in childhood
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Patricia H. C. Rondó, fax +55 11 3061 7771, email phcrondo@usp.br

References

Hide All
1Yajnik, CS (2000) Interactions of perturbations in intrauterine growth during childhood on the risk of adult-onset disease. Proc Nutr Soc 59, 257265.
2De Blasio, MJ, Gatford, KL, McMillen, IC, et al. (2007) Placental restriction of fetal growth increases insulin action, growth, and adiposity in the young lamb. Endocrinology 148, 13501358.
3Barker, DJ (2007) The origins of the developmental origins theory. J Intern Med 261, 412417.
4Barker, DJ (2005) The developmental origins of insulin resistance. Horm Res 64, Suppl. 3, 27.
5de Boo, HA & Harding, JE (2006) The developmental origins of adult disease (Barker) hypothesis. Aust N Z J Obstet Gynaecol 46, 414.
6Eriksson, JG, Forsén, T, Tuomilehto, J, et al. (2002) Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals. Diabetologia 45, 342348.
7Tanaka, Y, Kikuchi, T, Nagasaki, K, et al. (2005) Lower birth and visceral fat accumulation are related to hyperinsulinemia and insulin resistance in obese Japanese children. Hypertens Res 28, 529536.
8Valerio, G, Licenziati, MR, Iannuzzi, A, et al. (2006) Insulin reistance and impaired glucose tolerance in obese children and adolescents from Southern Italy. Nutr Metab Cardiovasc Dis 16, 279284.
9Mi, J, Cheng, H, Zhao, XY, et al. (2008) Developmental origin of metabolic syndrome: interaction of thinness at birth and overweight during adult life in Chinese population. Obes Rev 9 Suppl. 1, 9194.
10Barker, DJP (2007) Obesity and early life. Obesity 8, Suppl. 1, 4549.
11Yudkin, JS (2007) Insulin resistance and the metabolic syndrome – or the pitfalls of epidemiology. Diabetologia 50, 15761586.
12Law, CM (2002) Significance of birthweight for the future. Arch Dis Child Fetal Neonatal 86, 78.
13Yajnik, CS (2004) Early life origins of insulin resistance and type 2 diabetes in India and other Asian Countries. J Nutr 134, 205210.
14Yajnik, CS & Deshmukh, US (2008) Maternal nutrition, intrauterine programming and consequential risks in the offspring. Rev Endocr Metab Disord 9, 203211.
15Barker, DJP, Winter, PD, Osmmond, C, et al. (1989) Weight in infancy and death from ischaemic heart disease. Lancet 334, 577580.
16Ramachandran, A, Snehalatha, C, Latha, E, et al. (1997) Rising prevalence of NIDDM in an urban population in India. Diabetologia 40, 232237.
17Ministério da Saúde (2004) Evolução da Mortalidade no Brasil (The Evolution of Mortality in Brazil). Vigilância em Saúde, MS: Ministério da Saúde.
18Yajnik, CS, Fall, CHD, Vaydia, U, et al. (1995) Fetal growth and glucose and insulin metabolism in four year old Indian children. Diabet Med 12, 330336.
19Bavdekar, A, Yajnik, CS, Fall, CHD, et al. (1999) Insulin resistance syndrome in 8-year old Indian children. Small at birth, big at 8 years, or both? Diabetes 48, 24222429.
20Wilkin, TJ, Voss, LD, Metcalf, BS, et al. (2004) Metabolic risk in early childhood: The EarlyBird Study. Int J Obes Relat Metab Disord 28, Suppl. 3, S64S69.
21Jeffery, AN, Metcalf, BS, Hosking, J, et al. (2006) Little evidence for early programming of weight and insulin resistance for contemporary children: EarlyBird Diabetes Study report 19. Pediatrics 118, 11181123.
22Giapros, V, Evagelidou, E, Challa, A, et al. (2007) Serum adiponectin and leptin levels and insulin resistance in children born large for gestational age are affected by the degree of overweight. Clin Endocrinol 66, 353359.
23Gupta, M, Gupta, R, Pareek, A, et al. (2007) Low birth weight and insulin resistance in mid and late childhood. Indian Pediatr 44, 177184.
24Joglekar, CV, Fall, CH, Deshpande, VU, et al. (2007) Newborn size, infant and childhood growth, and body composition and cardiovascular disease risk factors at the age of 6 years: The Pune Maternal Nutrition Study. Int J Obes 31, 15341544.
25Rondó, PHC, Lemos, JO, Pereira, JA, et al. (2008) Relationship between birth weight and arterial elasticity in childhood. Clin Sci 115, 317326.
26Williams, RL, Creasy, RK, Cunningham, MD, et al. (1982) Fetal growth and perinatal viability in California. Obstet Gynecol 59, 624632.
27Rondó, PHC, Ferreira, RF, Nogueira, F, et al. (2003) Maternal psychological stress and distress as predictors of low birth weight, prematurity and intra- uterine growth retardation. Eur J Clin Nutr 57, 266272.
28Cameron, N (1984) The Measurement of Human Growth, 1st ed.London: Croom Helm.
29Jelliffe, DB & Jelliffe, EFP (1989) Community Nutritional Assessment, With Special Reference to Less Technically Developed Countries, 2nd ed.London: Oxford University Press.
30CDC – Centers for Disease Control and Prevention & National Center for Health Statistics (2000) CDC, United States of America.http://www.cdc.gov/growthcharts.
31Cole, TJ, Bellizzi, MC, Flegal, KM, et al. (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320, 12401243.
32McCarthy, HD, Jarrett, KV & Crawley, HF (2001) The development of waist circumference percentiles in British children aged 5·0–16·9 y. Eur J Clin Nutr 55, 901907.
33American Diabetes Association Position Statement (2004) Diagnosis and classification of diabetes mellitus. Diabetes Care 27, Suppl. 1, 510.
34Matthews, DR, Hosker, JP, Rudenski, AS, et al. (1985) Homeostasis model assessment: insulin resistance and beta cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412419.
35D'Annunzio, G, Vanelli, M, Meschi, F, et al. (2004) The SIEDP Study Group. Valori normali di- HOMA-IR in bambini e adolescents: studio multicentrico italiano. Quad Pediatr 3, 44.
36Friedwald, WT, Levy, RI & Fredrickson, DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultra centrifuge. Clin Chem 18, 499502.
37Giuliano, ICB, Caramelli, B, Pellanda, L, et al. (2006) I Guideline for preventing atherosclerosis in childhood and adolescence. Int J Atheroscler 1, 130.
38Moraes, AS, Beltran, RJ, Mondini, L, et al. (2006) Prevalence of overweight and obesity, and associated factors in school children from urban area in Chilpancingo, Guerrero, Mexico, 2004. Cad Saude Publica 22, 12891301.
39Jebb, SA, Rennie, KL & Cole, TJ (2004) Prevalence of overweight and obesity among young people in Great Britain. J Public Health Nutr 7, 461465.
40Tu, YK, West, R, Ellison, GTH, et al. (2005) Why evidence for the fetal origins of adult disease might be a statistical artifact: the ‘reversal paradox’ for the relation between birth and blood pressure in later life. Am J Epidemiol 161, 2732.
41Wallace, TM, Levy, JC & Matthews, DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27, 14871495.
42Fowden, AL (1985) Pancreatic endocrinology function and carbohydrate metabolism in the fetus. In Perinatal Endocrinology, vol. IV, pp. 7190 [Albrecht, E and Pepe, GJ, editors]. Ithaca, NY: Perinatology Press.
43Snoeck, A, Remacle, C, Reusens, B, et al. (1990) Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate 57, 107118.
44Yajnik, CS (2002) The lifecycle effects of nutrition and body size on adult adiposity, diabetes and cardiovascular disease. Obes Res 3, 217224.
45Hovi, P, Anderson, S, Eriksson, JG, et al. (2007) Glucose regulation in young adults with very low birth weight. N Engl J Med 358, 20532063.
46Krentz, AJ (2002) Insulin Resistance: A Clinical Handbook, 1st ed.Oxford: Blackwell Science.
47Molist-Brunet, N, Jimeno-Mollet, J & Franch-Nadal, J (2006) Correlation between the various measurements of obesity and the degree of resistance to insulin. Aten Primaria 37, 3036.
48Yajnik, CS, Godbole, K & Lubree, H (2007) Fetal programming of type 2 diabetes: is sex important? Diabetes Care 30, 27542755.
49Levitt, NS, Lambert, EV, Woods, D, et al. (2005) Adult BMI and fat distribution but not height amplify the effect of low birth weight on insulin resistance and increased blood pressure in 20-year-old South Africans. Diabetologia 48, 11181125.
50McKeigue, PM, Shah, B & Marmot, MG (1991) Relation of central obesity and insulin resistance with diabetes prevalence and cardiovascular risk in South Asians. Lancet 337, 382386.
51Yajnik, CS (2003) Nutrition, growth, and body size in relation to insulin resistance and type 2 diabetes. Curr Diab Rep 3, 108114.
52Chambers, EC, Tull, ES, Fraser, H, et al. (2005) A family history of diabetes is related to abnormal insulin sensitivity in African-Caribbean girls of low birth weight: is catch-up weight important? Ethn Dis 15, 424428.
53Bjorntorp, P (1993) Visceral obesity: a ‘civilization syndrome’. Obes Res 1, 206222.
54Li, L, Manor, O & Power, C (2004) Early environment and child-to-adult growth trajectories in the 1958 British birth cohort. Am J Clin Nutr 80, 185192.
55Hernán, MA, Hernández-Díaz, S, Werler, M, et al. (2002) Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol 155, 176184.
56Weinberg, RC (2005) Invited Commentary: Barker meets Simpson. Am J Epidemiol 161, 3335.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed