Skip to main content
×
×
Home

Serum and tissue 25-OH vitamin D3 concentrations do not predict bone abnormalities and molecular markers of vitamin D metabolism in the hypovitaminosis D kyphotic pig model

  • Laura A. Amundson (a1), Laura L. Hernandez (a2) and Thomas D. Crenshaw (a1)
Abstract

The hypovitaminosis D kyphotic pig provides a model to study maternal vitamin D (D) carryover on gross and molecular characteristics of bone abnormalities in offspring. Excess maternal D is proposed to protect offspring under nutritional challenges from developing bone abnormalities. Relationships between D sufficiency parameters and bone abnormalities were characterised. Sows (n 37) were fed diets with 0 (−D), 8·125 (+D) or 43·750 (++D) µg D3/kg throughout gestation and lactation. At weaning (3 weeks) pigs were fed diets with 0 (−D) or 7·0 (+D) µg D3/kg, each with 75 and 95 % (LCaP) or 150 and 120 % (HCaP) of the Ca and P requirements. Pigs were euthanised before colostrum consumption at birth (n 27), 3 weeks (n 27) or after the nursery period (7 weeks, n 71) for tissue analysis. At 7 weeks, differences due to maternal D were detected (P≤0·05) in pig growth, serum parameters and mRNA expression regardless of nursery diet. Prevalence of kyphosis in pigs at 13 weeks was affected by maternal D, but not prevented by only HCaP or +D nursery diets. Increased (P≤0·05) serum 25-OH-D3 concentrations in sows fed +D or ++D diets were not reflected by similar magnitudes of 25-OH-D3 in colostrum, 18-d milk, or serum and tissue concentrations in pigs. The mode of action by which maternal dietary D influences development of skeletal abnormalities warrants further investigation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Serum and tissue 25-OH vitamin D3 concentrations do not predict bone abnormalities and molecular markers of vitamin D metabolism in the hypovitaminosis D kyphotic pig model
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Serum and tissue 25-OH vitamin D3 concentrations do not predict bone abnormalities and molecular markers of vitamin D metabolism in the hypovitaminosis D kyphotic pig model
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Serum and tissue 25-OH vitamin D3 concentrations do not predict bone abnormalities and molecular markers of vitamin D metabolism in the hypovitaminosis D kyphotic pig model
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: L. A. Amundson, fax +1 608 262 5157, email lrortvedt@wisc.edu
References
Hide All
1. Rortvedt, LA & Crenshaw, TD (2012) Expression of kyphosis in young pigs is induced by a reduction of supplemental vitamin D in maternal diets and vitamin D, Ca, and P concentrations in nursery diets. J Anim Sci 90, 49054915.
2. Amundson, LA, Hernandez, LL, Laporta, J, et al. (2016) Maternal dietary vitamin D carryover alters offspring growth, skeletal mineralization, and tissue mRNA expression of genes related to vitamin D, calcium, and phosphorus homeostasis in swine. Br J Nutr 116, 771787.
3. Rosenstreich, SJ, Rich, C & Volwiler, W (1971) Deposition in and release of vitamin D3 from body fat: Evidence for a storage site in the rat. J Clin Invest 50, 679687.
4. Brouwer, DAJ, van Beek, J, Ferwerda, H, et al. (1998) Rat adipose tissue rapidly accumulates and slowly releases an orally-administered high vitamin D dose. Br J Nutr 79, 527532.
5. Johnson, DW & Palmer, LS (1939) Individual and breed variations in pigs on rations devoid of vitamin D. J Agric Res 58, 929939.
6. Rungby, JR, Mortensen, L, Jakobsen, K, et al. (1993) Distribution of hydroxylated vitamin D metabolites [250HD3 and 1,25(OH)2D3] in domestic pigs: evidence that 1,25(OH)2D3 is stored outside the blood circulation? Comp Biochem Physiol Comp Physiol 104, 483484.
7. Burild, A, Frandsen, HL, Poulsen, M, et al. (2014) Quantification of physiological levels of vitamin D3 and 25-hydroxyvitamin D3 in porcine fat and liver in subgram sample sizes. J Sep Sci 37, 26592663.
8. Mawer, EB, Backhouse, J, Holman, CA, et al. (1972) The distribution and storage of vitamin D and its metabolites in human tissues. Clin Sci 43, 413443.
9. Blum, M, Dolnikowski, G, Seyoum, E, et al. (2008) Vitamin D3 in fat tissue. Endocrine 33, 9094.
10. Didriksen, A, Burild, A, Jakobsen, J, et al. (2015) Vitamin D3 increases in abdominal subcutaneous fat tissue after supplementation with vitamin D3 . Eur J Endocrinol 172, 235241.
11. Liu, NQ & Hewison, M (2012) Vitamin D, the placenta and pregnancy. Arch Biochem Biophys 523, 3747.
12. Dror, DK & Allen, LH (2010) Vitamin D inadequacy in pregnancy: biology, outcomes, and interventions. Nutr Rev 68, 465477.
13. Mahon, P, Harvey, N, Crozier, S, et al. (2010) Low maternal vitamin D status and fetal bone development: Cohort study. J Bone Miner Res 25, 1419.
14. Hatun, S, Ozkan, B, Orbak, Z, et al. (2005) Vitamin D deficiency in early infancy. J Nutr 135, 279282.
15. Javaid, MK, Crozier, SR, Harvey, NC, et al. (2006) Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 367, 3643.
16. Institute of Medicine (2011) Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: The National Academies Press.
17. National Research Council (2012) Nutrient Requirements of Swine, 11th ed. Washington, DC: The National Academies Press.
18. Schmittgen, TD & Livak, KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3, 11011108.
19. Hittmeier, LJ, Grapes, L, Lensing, RL, et al. (2006) Genetic background influences metabolic response to dietary phosphorus restriction. J Nutr Biochem 17, 385395.
20. Nygard, AB, Jorgensen, CB, Cirera, S, et al. (2007) Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol 8, 6772.
21. Goff, JP, Horst, RL & Littledike, ET (1984) Effect of sow vitamin D status at parturition on the vitamin D status of neonatal piglets. J Nutr 114, 163169.
22. Halloran, BP, Barthell, EN & DeLuca, HF (1979) Vitamin D metabolism during pregnancy and lactation in the rat. Proc Natl Acad Sci U S A 76, 55495553.
23. Arnold, J, Madson, DM, Ensley, SM, et al. (2015) Survey of serum vitamin D status across stages of swine production and evaluation of supplemental bulk vitamin D premixes used in swine diets. J Swine Health Prod 23, 2834.
24. Lian, J, Stewart, C, Puchacz, E, et al. (1989) Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc Natl Acad Sci U S A 86, 11431147.
25. Ortega, N, Behonick, DJ & Werb, Z (2004) Matrix remodeling during endochondral ossification. Trends Cell Biol 14, 8693.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Amundson supplementary material
Tables S1-S3

 Word (20 KB)
20 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed