Skip to main content Accesibility Help

Sex differences in lipid and glucose kinetics after ingestion of an acute oral fructose load

  • Christel Tran (a1), Delphine Jacot-Descombes (a1), Virgile Lecoultre (a1), Barbara A. Fielding (a2), Guillaume Carrel (a1), Kim-Anne Lê (a1), Philippe Schneiter (a1), Muriel Bortolotti (a1), Keith N. Frayn (a2) and Luc Tappy (a1) (a3)...

The increase in VLDL TAG concentration after ingestion of a high-fructose diet is more pronounced in men than in pre-menopausal women. We hypothesised that this may be due to a lower fructose-induced stimulation of de novo lipogenesis (DNL) in pre-menopausal women. To evaluate this hypothesis, nine healthy male and nine healthy female subjects were studied after ingestion of oral loads of fructose enriched with 13C6 fructose. Incorporation of 13C into breath CO2, plasma glucose and plasma VLDL palmitate was monitored to evaluate total fructose oxidation, gluconeogenesis and hepatic DNL, respectively. Substrate oxidation was assessed by indirect calorimetry. After 13C fructose ingestion, 44·0 (sd 3·2) % of labelled carbons were recovered in plasma glucose in males v. 41·9 (sd 2·3) % in females (NS), and 42·9 (sd 3·7) % of labelled carbons were recovered in breath CO2 in males v. 43·0 (sd 4·5) % in females (NS), indicating similar gluconeogenesis from fructose and total fructose oxidation in males and females. The area under the curve for 13C VLDL palmitate tracer-to-tracee ratio was four times lower in females (P < 0·05), indicating a lower DNL. Furthermore, lipid oxidation was significantly suppressed in males (by 16·4 (sd 5·2), P < 0·05), but it was not suppressed in females ( − 1·3 (sd 4·7) %). These results support the hypothesis that females may be protected against fructose-induced hypertriglyceridaemia because of a lower stimulation of DNL and a lower suppression of lipid oxidation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sex differences in lipid and glucose kinetics after ingestion of an acute oral fructose load
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sex differences in lipid and glucose kinetics after ingestion of an acute oral fructose load
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sex differences in lipid and glucose kinetics after ingestion of an acute oral fructose load
      Available formats
Corresponding author
*Corresponding author: Professor Luc Tappy, fax +41 692 55 95, email
Hide All
1 Tappy, L & Le, KA (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90, 2346.
2 Berneis, KK & Krauss, RM (2002) Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res 43, 13631379.
3 Aeberli, I, Zimmermann, MB, Molinari, L, et al. (2007) Fructose intake is a predictor of LDL particle size in overweight schoolchildren. Am J Clin Nutr 86, 11741178.
4 Melanson, KJ, Zukley, L, Lowndes, J, et al. (2007) Effects of high-fructose corn syrup and sucrose consumption on circulating glucose, insulin, leptin, and ghrelin and on appetite in normal-weight women. Nutrition 23, 103112.
5 Stanhope, KL, Griffen, SC, Bair, BR, et al. (2008) Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals. Am J Clin Nutr 87, 11941203.
6 Bantle, JP, Raatz, SK, Thomas, W, et al. (2000) Effects of dietary fructose on plasma lipids in healthy subjects. Am J Clin Nutr 72, 11281134.
7 Couchepin, C, Le, KA, Bortolotti, M, et al. (2008) Markedly blunted metabolic effects of fructose in healthy young female subjects compared with male subjects. Diabetes Care 31, 12541256.
8 Macdonald, I (1966) Influence of fructose and glucose on serum lipid levels in men and pre- and postmenopausal women. Am J Clin Nutr 18, 369372.
9 Vasudevan, H, Xiang, H & McNeill, JH (2005) Differential regulation of insulin resistance and hypertension by sex hormones in fructose-fed male rats. Am J Physiol Heart Circ Physiol 289, H1335H1342.
10 Galipeau, D, Verma, S & McNeill, JH (2002) Female rats are protected against fructose-induced changes in metabolism and blood pressure. Am J Physiol Heart Circ Physiol 283, H2478H2484.
11 Song, D, Arikawa, E, Galipeau, D, et al. (2004) Androgens are necessary for the development of fructose-induced hypertension. Hypertension 43, 667672.
12 Durnin, JV & Womersley, J (1974) Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32, 7797.
13 Petersen, KF, Laurent, D, Yu, C, et al. (2001) Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans. Diabetes 50, 12631268.
14 Schricker, T, Albuszies, G, Kugler, B, et al. (1994) Determination of glycerol turnover by stable-isotope technique in humans: a new [1,1,2,3,3-2H5]glycerol derivative for mass-spectrometry analysis. Nutrition 10, 342345.
15 Wolfe, R (editor) (1992) Radioactive and Stables Isotope Tracers in Biomedicine: Principles and Practice of Kinetics Analysis. New York: Wiley-Liss.
16 Gay, LJ, Schneiter, P, Schutz, Y, et al. (1994) A non-invasive assessment of hepatic glycogen kinetics and post-absorptive gluconeogenesis in man. Diabetologia 37, 517523.
17 Bickerton, AS, Roberts, R, Fielding, BA, et al. (2007) Preferential uptake of dietary fatty acids in adipose tissue and muscle in the postprandial period. Diabetes 56, 168176.
18 DeBodo, RC, Steele, R, Altszuler, N, et al. (1963) On the hormonal regulation of carbohydrate metabolism: studies with 14C glucose. Recent Prog Horm Res 19, 445448.
19 Romijn, JA, Coyle, EF, Sidossis, LS, et al. (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265, 3 Pt 1, E380E391.
20 Proietto, J, Rohner-Jeanrenaud, F, Ionescu, E, et al. (1987) Non-steady-state measurement of glucose turnover in rats by using a one-compartment model. Am J Physiol 252, 1 Pt 1, E77E84.
21 Livesey, G & Elia, M (1988) Estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels. Am J Clin Nutr 47, 608628.
22 Allsop, JR, Wolfe, RR & Burke, JF (1978) Tracer priming the bicarbonate pool. J Appl Physiol 45, 137139.
23 Chong, MF, Fielding, BA & Frayn, KN (2007) Mechanisms for the acute effect of fructose on postprandial lipemia. Am J Clin Nutr 85, 15111520.
24 Delarue, J, Normand, S, Pachiaudi, C, et al. (1993) The contribution of naturally labelled 13C fructose to glucose appearance in humans. Diabetologia 36, 338345.
25 Tounian, P, Schneiter, P, Henry, S, et al. (1994) Effects of infused fructose on endogenous glucose production, gluconeogenesis, and glycogen metabolism. Am J Physiol 267, 5 Pt 1, E710E717.
26 Neese, RA, Schwarz, JM, Faix, D, et al. (1995) Gluconeogenesis and intrahepatic triose phosphate flux in response to fasting or substrate loads. Application of the mass isotopomer distribution analysis technique with testing of assumptions and potential problems. J Biol Chem 270, 1445214466.
27 Frayn, KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol 55, 628634.
28 Faeh, D, Minehira, K, Schwarz, JM, et al. (2005) Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 54, 19071913.
29 Le, KA, Faeh, D & Stettler, R (2006) A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am J Clin Nutr 84, 13741379.
30 Abdel-Sayed, A, Binnert, C, Le, KA, et al. (2008) A high-fructose diet impairs basal and stress-mediated lipid metabolism in healthy male subjects. Br J Nutr 100, 393399.
31 Parks, EJ, Skokan, LE, Timlin, MT, et al. (2008) Dietary sugars stimulate fatty acid synthesis in adults. J Nutr 138, 10391046.
32 Stanhope, KL & Havel, PJ (2008) Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol 19, 1624.
33 Van ben Berghe, G (1978) Metabolic effects of fructose in the liver. Curr Top Cell Regul 13, 97135.
34 Brown, CM, Dulloo, AG, Yepuri, G, et al. (2008) Fructose ingestion acutely elevates blood pressure in healthy young humans. Am J Physiol Regul Integr Comp Physiol 294, R730R737.
35 Tappy, L, Randin, J, Felber, J, et al. (1986) Comparison of thermogenic effect of fructose and glucose in normal humans. Am J Physiol 250, 6 Pt 1, E718E724.
36 Pujol, E, Rodriguez-Cuenca, S, Frontera, M, et al. (2003) Gender- and site-related effects on lipolytic capacity of rat white adipose tissue. Cell Mol Life Sci 60, 19821989.
37 Mittendorfer, B, Horowitz, JF & Klein, S (2001) Gender differences in lipid and glucose kinetics during short-term fasting. Am J Physiol Endocrinol Metab 281, E1333E1339.
38 Macotela, Y, Boucher, J, Tran, TT, et al. (2009) Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes 58, 803812.
39 Cooke, PS & Naaz, A (2004) Role of estrogens in adipocyte development and function. Exp Biol Med (Maywood) 229, 11271135.
40 Halkes, CJ, van Dijk, H, Verseyden, C, et al. (2003) Gender differences in postprandial ketone bodies in normolipidemic subjects and in untreated patients with familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol 23, 18751880.
41 Blaak, E (2001) Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care 4, 499502.
42 Lundholm, L, Zang, H, Hirschberg, AL, et al. (2008) Key lipogenic gene expression can be decreased by estrogen in human adipose tissue. Fertil Steril 90, 4448.
43 Diamant, YZ, Neuman, S & Shafrir, E (1975) Effect of chorionic gonadotropin, triamcinolone, progesterone and estrogen on enzymes of placenta and liver in rats. Biochim Biophys Acta 385, 257267.
44 Paquette, A, Wang, D, Jankowski, M, et al. (2008) Effects of ovariectomy on PPAR alpha, SREBP-1c, and SCD-1 gene expression in the rat liver. Menopause 15, 11691175.
45 Hewitt, KN, Pratis, K, Jones, ME, et al. (2004) Estrogen replacement reverses the hepatic steatosis phenotype in the male aromatase knockout mouse. Endocrinology 145, 18421848.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed