Skip to main content Accessibility help
×
Home

Using a fingertip whole blood sample for rapid fatty acid measurement: method validation and correlation with erythrocyte polar lipid compositions in UK subjects

  • J. Gordon Bell (a1), Elizabeth E. Mackinlay (a1), James R. Dick (a1), Irene Younger (a1), Bill Lands (a2) and Thomas Gilhooly (a3)...

Abstract

It is well accepted that n-3 long-chain PUFA intake is positively associated with a range of health benefits. However, while benefits have been clearly shown, especially for CVD, the mechanisms for prevention/benefit are less understood. Analysis of plasma and erythrocyte phospholipids (PL) have been used to measure the status of the highly unsaturated fatty acids (HUFA), especially EPA (20 : 5n-3) and DHA (22 : 6n-3), although the time and complexity of the process places limitations on the sample numbers analysed. An assay has been developed using whole blood, collected by finger prick, and stored on absorbant paper, subjected to direct methylation and fatty acids quantified by automated GC. Tests on fatty acid stability show that blood samples are stable when stored at − 20°C for 1 month although some loss of HUFA was seen at 4°C. A total of fifty-one patients, including twenty-seven who consumed no fatty acid supplements, provided a blood sample for analysis. Concentrations of all major fatty acids were measured in erythrocyte PL and whole blood. The major HUFA, including EPA, DHA and arachidonic acid (ARA; 20 : 4n-6), as well as the ARA:EPA ratio and the percentage n-3 HUFA/total HUFA all showed good correlations, between erythrocyte PL and whole blood. Values of r2 ranged from 0·48 for ARA to 0·95 for the percentage of n-3 HUFA/total HUFA. This assay provides a non-invasive, rapid and reliable method of HUFA quantification with the percentage of n-3 HUFA value providing a potential blood biomarker for large-scale nutritional trials.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Using a fingertip whole blood sample for rapid fatty acid measurement: method validation and correlation with erythrocyte polar lipid compositions in UK subjects
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Using a fingertip whole blood sample for rapid fatty acid measurement: method validation and correlation with erythrocyte polar lipid compositions in UK subjects
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Using a fingertip whole blood sample for rapid fatty acid measurement: method validation and correlation with erythrocyte polar lipid compositions in UK subjects
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor J. G. Bell, fax +44 1786 472133, email g.j.bell@stir.ac.uk

References

Hide All
1 Ruxton, CHS, Calder, PC, Reed, SC, et al. (2005) The impact of long-chain n-3 polyunsaturated fatty acids on human health. Nutr Res Rev 18, 113129.
2 Calder, PC (2010) The 2008 ESPEN Sir David Cuthbertson lecture: fatty acids and inflammation – from the membrane to the nucleus and from the laboratory bench to the clinic. Clin Nutr 29, 512.
3 Maclean, CH, Mojica, WA, Morton, SC, et al. (2004) Effects of omega-3 fatty acids on lipids and glycemic control in type II diabetes and the metabolic syndrome and on inflammatory bowel disease, rheumatoid arthritis, renal disease, systemic lupus erythromatosus, and osteoporosis. Evid Rep Technol Assess (Summ) 89, 14.
4 Bjøkkaer, T, Brun, JG, Valen, M, et al. (2006) Short-term duodenal seal oil administration normalised n-6 to n-3 fatty acid ratio in rectal mucosa and ameliorated bodily pain in patients with inflammatory bowel disease. Lipids Health Dis 5, 6.
5 Dyerberg, J, Bang, HO & Hjorne, N (1975) Fatty acid composition of the plasma lipids in Greenland Eskimos. Am J Clin Nutr 28, 958966.
6 Young, G & Conquer, J (2005) Omega-3 fatty acids and neuropsychiatric disorders. Reprod Nutr Dev 45, 128.
7 Hibbeln, JR, Nieminen, LR, Blasbalg, TL, et al. (2006) Healthy intakes of n-3 and n-6 fatty acids: estimations considering worldwide diversity. Am J Clin Nutr 83, 1483S1493S.
8 Hibbeln, JR, Davis, JM, Steer, C, et al. (2007) Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet 369, 578585.
9 Stark, KD (2008) The percentage of n-3 highly unsaturated fatty acids in total HUFA as a biomarker for omega-3 fatty acid status in tissues. Lipids 43, 4553.
10 Metherel, AH, Armstrong, JM, Patterson, AC, et al. (2009) Assessment of blood measures of the n-3 polyunsaturated fatty acids with acute fish oil supplementation and washout in men and women. Prostaglandins Leukot Essent Fatty Acids 81, 2329.
11 Lands, WEM, Hamazaki, T, Yamazaki, K, et al. (1990) Changing dietary patterns. Am J Clin Nutr 51, 991993.
12 Maragoni, F, Colombo, C & Galli, C (2004) A method for the direct evaluation of the fatty acid status in a drop of blood from a fingertip in humans: applicability to nutritional and epidemiological studies. Anal Biochem 326, 267272.
13 Marangoni, F, Colombo, C, Martiello, A, et al. (2007) The fatty acid profiles in a drop of blood from a fingertip correlate with physiological, dietary and lifestyle parameters in volunteers. Prostaglandins Leukot Essent Fatty Acids 76, 8792.
14 Armstrong, JM, Metherel, AH & Stark, KD (2008) Direct microwave transesterification of fingertip prick blood samples for fatty acid determinations. Lipids 43, 187196.
15 Bailey-Hall, E, Nelson, EB & Ryan, AS (2008) Validation of a rapid measure of blood PUFA levels in humans. Lipids 43, 181186.
16 Rizzo, AM, Montorfano, G, Negroni, M, et al. (2010) A rapid method for determining arachidonic:eicosapentaenoic acid ratios in whole blood lipids: correlation with erythrocyte membrane ratios and validation in a large population of various ages and pathologies. Lipids Health Dis 9, 7.
17 Bligh, EG & Dyer, WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911917.
18 Christie, WW (2003) Lipid Analysis, 3rd ed., pp. 205224. Bridgewater: The Oily Press.
19 Siddiqui, RA, Hravey, KA, Ruzmetov, N, et al. (2009) n-3 fatty acids prevent whereas trans-fatty acids induce vascular inflammation and sudden cardiac death. Br J Nutr 102, 18111819.
20 Schachter, HM, Kourad, K, Merali, Z, et al. (2005) Effects of omega-3 fatty acids on mental health. Evid Rep Technol Assess (Summ) 89, 111.
21 Hodge, W, Barnes, D, Schachter, HM, et al. (2005) Effects of omega-3 fatty acids on eye health. Evid Rep Technol Assess (Summ) 117, 16.
22 Marangoni, F, Angeli, MT, Colli, S, et al. (1993) Changes of n-3, n-6 fatty acids in plasma and circulating cells of normal subjects after prolonged administration of 20:5 (EPA) and 22:6 (DHA) ethyl esters and prolonged washout. Biochim Biophys Acta 1210, 5562.
23 Bell, JG, Miller, D, MacDonald, DJ, et al. (2010) The fatty acid compositions of red blood cell and plasma polar lipids in children with autism, developmental delay or typically developing controls and the effect of fish oil intake. Br J Nutr 103, 11601167.
24 Katan, MB, Deslypere, JP, van Birgelen, AP, et al. (1997) Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18 month controlled study. J Lipid Res 38, 20122022.
25 Harris, WS & von Schacky, C (2004) The omega-3 index: a new risk factor for death from coronary heart disease? Prev Med 39, 212220.
26 Poppitt, SD, Kilmartin, P, Butler, P, et al. (2005) Assessment of erythrocyte phospholipid fatty acid composition as a biomarker for dietary MUFA, PUFA or saturated fatty acid intake in a controlled crossover intervention trial. Lipids Health Dis 5, 30.
27 Waku, K & Lands, WEM (1968) Control of lecithin biosynthesis in erythrocyte membranes. J Lipid Res 9, 1218.
28 Maclean, CH, Issa, AM, Newberry, SJ, et al. (2005) Effects of omega-3 fatty acids on cognitive function with aging, dementia, and neurological diseases. Evid Rep Technol Assess (Summ) 114, 13.
29 Ichihara, A, Waku, K, Yamaguchi, C, et al. (2002) A convenient method for determination of the C20–22 PUFA composition of the glycerolipids in blood and breast milk. Lipids 37, 523526.
30 Lands, B (2009) Measuring blood fatty acids as a surrogate indicator for coronary heart disease risk in population studies. In A Balanced Omega-6/Omega-3 Fatty Acid Ratio, Cholesterol and Coronary Heart Disease, pp. 2234 [Simopoulo, AP and De Meester, F, editors]. World Rev Nutr Diet Karger, Basel.
31 Innis, SM & Elias, SL (2003) Intakes of essential n-6 and n-3 polyunsaturated fatty acids among pregnant Canadian women. Am J Clin Nutr 77, 473478.
32 Lands, WE, Libelt, B, Morris, A, et al. (1992) Maintenance of lower proportions of (n-6) eicosanoid precursors in phospholipids of human plasma in response to added dietary (n-3) fatty acids. Biochim Biophys Acta 1180, 147162.
33 Dolecek, TA (1992) Epidemiological evidence of relationships between dietary polyunsaturated fatty acids, and mortality in the multiple risk factor intervention trial. Proc Soc Exp Biol Med 200, 177182.
34 Lands, WE (2005) Dietary fat and health: the evidence and the politics of prevention: careful use of dietary fats can improve life and prevent disease. Ann NY Acad Sci 1055, 177182.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed