Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-67wr7 Total loading time: 0.572 Render date: 2022-12-09T23:00:55.998Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Vitamin C and the common cold

Published online by Cambridge University Press:  09 March 2007

Harri Hemilä
Affiliation:
Institute of Biotechnology, University of Helsinki, Valimotie 7, SF-00380 Helsinki, Finland
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of vitamin C on the common cold has been the subject of several studies. These studies do not support a considerable decrease in the incidence of the common cold with supplemental vitamin C. However, vitamin C has consistently decreased the duration of cold episodes and the severity of symptoms. The benefits that have been observed in different studies show a large variation and, therefore, the clinical significance may not be clearly inferred from them. The biochemical explanation for the benefits may be based on the antioxidant property of vitamin C. In an infection, phagocytic leucocytes become activated and they produce oxidizing compounds which are released from the cell. By reacting with these oxidants, vitamin C may decrease the inflammatory effects caused by them. Scurvy, which is caused by a deficiency in vitamin C, is mostly attributed to the decreased synthesis of collagen. However, vitamin C also participates in several other reactions, such as the destruction of oxidizing substances. The common cold studies indicate that the amounts of vitamin C which safely protect from scurvy may still be too low to provide an efficient rate for other reactions, possibly antioxidant in nature, in infected people.

Type
Nutritional Epidemiology
Copyright
Copyright © The Nutrition Society 1992

References

Abramson, J. S. & Mills, E. L. (1988) Depression of neutrophil function by viruses and its role in secondary microbial infections. Reviews of Infectious Diseases 10, 326341.CrossRefGoogle ScholarPubMed
Anderson, R. & Lukey, P. T. (1987) A biological role for ascorbate in the selective neutralization of extracellular phagocyte-derived oxidants. Annals of the New York Academy of Sciences 498, 229247.CrossRefGoogle ScholarPubMed
Anderson, R., Oosthuizen, R., Maritz, R., Theron, A. & Rensburg, A. J. (1980) The effect of increasing weekly doses of ascorbate on certain cellular and humoral immune functions in normal volunteers. American Journal of Clinical Nutrition 33, 7176.CrossRefGoogle Scholar
Anderson, R. & Theron, A. J. (1990)Physiological potential of ascorbate, β-carotene and α-tocopherol individually and in combination in the prevention of tissue damage, carcinogenesis and immune dysfunction mediated by phagocyte-derived reactive oxidants. World Review of Nutrition and Dietetics 62, 2758.CrossRefGoogle ScholarPubMed
Anderson, T. W., Beaton, G. H., Corey, P. N. & Spero, L. (1975) Winter illness and vitamin C: the effect of relatively low doses. Canadian Medical Association Journal 112, 823826.Google ScholarPubMed
Anderson, T. W., Reid, D. B. & Beaton, G. H. (1972) Vitamin C and the common cold: a double-blind trial. Canadian Medical Association Journal 107, 503508.Google ScholarPubMed
Anderson, T. W., Reid, D. B. & Beaton, G. H. (1973) Vitamin C and the common cold. Canadian Medical Association Journal 108, 133.Google ScholarPubMed
Anderson, T. W., Suranyi, G. & Beaton, G. H. (1974) The effect on winter illness of large doses of vitamin C. Canadian Medical Association Journal 111, 3136.Google ScholarPubMed
Asfora, J. (1977) Vitamin C in high doses in the treatment of the common cold. International Journal for Vitamin and Nutrition Research Suppl. 16, 219234.Google Scholar
Baehner, R. L., Boxer, L. A., Allen, J. M. & Davis, J. (1977) Autooxidation as a basis for altered function by polymorphonuclear leukocytes. Blood 50, 327335.Google ScholarPubMed
Bancalari, A., Seguel, C., Neira, F., Ruiz, I. & Calvo, C. (1984) Valor profilactico de la vitamina C en infecciones respiratorias agudas del escolar (Prophylactic value of vitamin C in acute respiratory infections of schoolchildren). Revista Medica de Chile 112, 871876.Google Scholar
Boxer, L. A., Vanderbilt, B., Bonsib, S., Jersild, R., Yang, H. H. & Baehner, R. L. (1979) Enhancement of chemotactic response and microtubule assembly in human leukocytes by ascorbic acid. Journal of Cellular Physiology 100, 119126.CrossRefGoogle ScholarPubMed
Briggs, M. (1984) Vitamin C and infectious disease: a review of the literature and the results of a randomized, double-blind, prospective study over 8 years. In Recent Vitamin Research pp. 3982, [Briggs, M. H., editor];. Boca Raton: CRC Press.Google Scholar
Bucca, C., Rolla, G., Arossa, W., Caria, E., Elia, C., Nebiolo, F. & Baldi, S. (1989) Effect of ascorbic acid on increased bronchial responsiveness during upper airway infection. Respiration 55, 214219.CrossRefGoogle ScholarPubMed
Carr, A. B., Einstein, R., Lai, Y. C., Martin, N. G. & Starmer, G. A. (1981) Vitamin C and the common cold: A second MZ co-twin control study. Acta Geneticae Medicae et Gemellologiae 30, 249255.CrossRefGoogle Scholar
Cathcart, R. F. (1981) Vitamin C, titrating to bowel tolerance, anascorbemia, and acute induced scurvy. Medical Hypotheses 7, 13591376.CrossRefGoogle ScholarPubMed
Chalmers, T. C. (1975) Effects of ascorbic acid on the common cold. An evaluation of the evidence. American Journal of Medicine 58, 532536.CrossRefGoogle Scholar
Charleston, S. S. & Clegg, K. M. (1972) Ascorbic acid and the common cold. Lancet i, 14011402.CrossRefGoogle Scholar
Chatterjee, G. C., Majumder, P. K., Banerjee, S. K., Roy, R. K., Ray, B. & Rudrapal, D. (1975a) Relationships of protein and mineral intake to l-ascorbic acid metabolism, including considerations of some directly related hormones. Annals of the New York Academy of Sciences 258, 382400.CrossRefGoogle ScholarPubMed
Chatterjee, I. B., Das Gupta, S., Majumder, A. K., Nandi, B. K. & Subramanian, N. (1975b) Effect of ascorbic acid on histamine metabolism in scorbutic guinea-pigs. Journal of Physiology 251, 271279.CrossRefGoogle ScholarPubMed
Chatterjee, I. B., Majumder, A. K., Nandi, B. K. & Subramanian, N. (1975c) Synthesis and some major functions of vitamin C in animals. Annals of the New York Academy of Sciences 258, 2447.CrossRefGoogle ScholarPubMed
Cheraskin, E., Ringsdorf, W. M. Jr, Michael, D. W. & Hicks, B. S. (1973) Daily vitamin C consumption and reported respiratory findings. International Journal for Vitamin and Nutrition Research 43, 4255.Google ScholarPubMed
Chretien, J. H. & Garagusi, V. F. (1973) Correction of corticosteroid-induced defects of polymorphonuclear neutrophil function by ascorbic acid. Journal of the Reticuloendothelial Society 14, 280286.Google ScholarPubMed
Clegg, K. M. & Macdonald, J. M. (1975) l-ascorbic acid and d-isoascorbic acid in a common cold survey. American Journal of Clinical Nutrition 28, 973976.CrossRefGoogle Scholar
Clemetson, C. A. B. (1980) Histamine and ascorbic acid in human blood. Journal of Nutrition 110, 662668.CrossRefGoogle ScholarPubMed
Cohen, M. V. (1989) Free radicals in ischemic and reperfusion myocardial injury: is this the time for clinical trials? Annals of Internal Medicine 111, 918931.CrossRefGoogle ScholarPubMed
Conney, A. H., Bray, G. A., Evans, C. & Burns, J. J. (1961) Metabolic interactions between l-ascorbic acid and drugs. Annals of the New York Academy of Sciences 92, 115127.CrossRefGoogle ScholarPubMed
Coulehan, J. L. (1979) Ascorbic acid and the common cold. Reviewing the evidence. Postgraduate Medicine 66 (3), 153–160.CrossRefGoogle Scholar
Coulehan, J. L., Eberhard, S., Kapner, L., Taylor, F., Rogers, K. & Garry, P. (1976) Vitamin C and acute illness in Navajo schoolchildren. New England Journal of Medicine 295, 973977.CrossRefGoogle Scholar
Coulehan, J. L., Reisinger, K. S., Rogers, K. D. & Bradley, D. W. (1974) Vitamin C prophylaxis in a boarding school. New England Journal of Medicine 290, 610.CrossRefGoogle Scholar
Cowan, D. W., Diehl, H. S. & Baker, A. B. (1942) Vitamins for the prevention of colds. Journal of the American Medical Association 120, 12681271.CrossRefGoogle Scholar
Cross, C. E., Halliwell, B., Borish, E. T., Pryor, W. A., Ames, B. N., Saul, R. L., McCord, J. M. & Harman, D. (1987) Oxygen radicals and human disease. Annals of Internal Medicine 107, 526545.CrossRefGoogle ScholarPubMed
Dalton, W. L. (1962) Massive doses of vitamin C in the treatment of viral diseases. Journal of the Indiana State Medical Association 55, 11511154.Google ScholarPubMed
Davies, J. E. W., Hughes, R. E., Jones, E., Reed, S. E., Craig, J. W. & Tyrrell, D. A. J. (1979) Metabolism of ascorbic acid (vitamin C) in subjects infected with common cold viruses. Biochemical Medicine 21, 7885.CrossRefGoogle ScholarPubMed
Diliberto, E. J. Jr, Menniti, F. S., Knoth, J., Daniels, A. J., Kizer, J. S. & Viveros, O. H. (1987) Adrenomedullary chromaffin cells as a model to study the neurobiology of ascorbic acid: from monooxygenation to neuromodulation. Annals of the New York Academy of Sciences 498, 2853.CrossRefGoogle Scholar
Drath, D. B. & Karnovsky, M. L. (1974) Bactericidal activity of metal-mediated peroxide-ascorbate systems. Infection and Immunity 10, 10771083.Google ScholarPubMed
Dugal, L. P. (1961) Vitamin C in relation to cold temperature tolerance. Annals of the New York Academy of Sciences 92, 307317.CrossRefGoogle ScholarPubMed
Dykes, M. H. M. & Meier, P. (1975) Ascorbic acid and the common cold. Evaluation of its efficacy and toxicity. Journal of the American Medical Association 231, 10731079.CrossRefGoogle ScholarPubMed
Eaton, S. B. & Konner, M. (1985) Paleolithic nutrition: a consideration of its nature and current implications. New England Journal of Medicine 312, 283289.CrossRefGoogle ScholarPubMed
Elliott, B. (1973) Ascorbic acid; efficacy in the prevention of symptoms of respiratory infection on a Polaris submarine. International Research Communications System/Medical Science 1 (3), 12.Google Scholar
Elwood, P. C., Hughes, S. J. & Leger, A. S. (1977) A randomized controlled trial of the therapeutic effect of vitamin C in the common cold. Practitioner 218, 133137.Google ScholarPubMed
Elwood, P. C., Lee, H. P., Leger, A. S., Baird, I. M. & Howard, A. N. (1976) A randomized controlled trial of vitamin C in the prevention and amelioration of the common cold. British Journal of Preventive and Social Medicine 30, 193196.Google ScholarPubMed
Faden, H., Kaul, T. N. & Ogra, P. L. (1983) Activation of oxidative and arachidonic acid metabolism in neutrophils by respiratory syncytial virus antibody complexes: possible role in disease. Journal of Infectious Diseases 148, 110116.CrossRefGoogle Scholar
Frei, B., England, L. & Ames, B. N. (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proceedings of the National Academy of Sciences, U.S.A. 86, 63776381.CrossRefGoogle ScholarPubMed
Frei, B., Stocker, R. & Ames, B. N. (1988) Antioxidant defenses and lipid peroxidation in human blood plasma. Proceedings of the National Academy of Sciences, U.S.A. 85, 97489752.CrossRefGoogle ScholarPubMed
Ganguly, R., Durieux, M.-F. & Waldman, R. H. (1976) Macrophage function in vitamin C-deficient guinea pigs. American Journal of Clinical Nutrition 29, 762765.CrossRefGoogle ScholarPubMed
Ginter, E. (1989) Ascorbic acid in cholesterol metabolism and in the detoxification of xenobiotic substances: problem of optimum vitamin C intake. Nutrition 5, 369374.Google ScholarPubMed
Glembotski, C. C. (1987) The role of ascorbic acid in the biosynthesis of the neuroendocrine peptides α-MSH and TRH. Annals of the New York Academy of Sciences 498, 5461.CrossRefGoogle ScholarPubMed
Goetzl, E. J., Wasserman, S. I., Gigli, I. & Austen, K. F. (1974) Enhancement of random migration and chemotactic response of human leukocytes by ascorbic acid. Journal of Clinical Investigation 53, 813818.CrossRefGoogle ScholarPubMed
Goldschmidt, M. C., Masin, W. J., Brown, L. R. & Wyde, P. R. (1988) The effect of ascorbic acid deficiency on leukocyte phagocytosis and killing of Actinomyces viscosus. International Journal for Vitamin and Nutrition Research 58, 326334.Google ScholarPubMed
Halliwell, B. (1989) Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. British Journal of Experimental Pathology 70, 737757.Google ScholarPubMed
Halliwell, B. & Gutteridge, J. M. C. (1990) The antioxidants of human extracellular fluids. Archives of Biochemistry and Biophysics 280, 18.CrossRefGoogle ScholarPubMed
Halliwell, B., Wasil, M. & Grootveld, M. (1987) Biologically significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by ascorbic acid. FEBS Letters 213, 1518.CrossRefGoogle ScholarPubMed
Hartshorn, K. L. & Tauber, A. I. (1988) The influenza virus-infected phagocyte. Hematology/Oncology Clinics of North America 2, 301315.CrossRefGoogle ScholarPubMed
Heffner, J. E. & Repine, J. E. (1989) Pulmonary strategies of antioxidant defense. American Review of Respiratory Diseases 140, 531554.CrossRefGoogle ScholarPubMed
Hemilä, H. (1984) Nutritional need versus optimal intake. Medical Hypotheses 14, 135139.CrossRefGoogle ScholarPubMed
Hemilä, H. (1986) A re-evaluation of nutritional goals – not just deficiency counts. Medical Hypotheses 20, 1727.CrossRefGoogle Scholar
Hemilä, H. (1991) Is there a biochemical basis for ‘nutrient need’? Trends in Food Science and Technology 2, 73.CrossRefGoogle Scholar
Hemilä, H., Roberts, P. & Wikström, M. (1984) Activated polymorphonuclear leucocytes consume vitamin C. FEBS Letters 178, 2530.CrossRefGoogle ScholarPubMed
Hendley, J. O. (1983) Rhinovirus colds. Immunology and pathogenesis. European Journal of Respiratory Diseases. 64, Suppl.128, 340343.Google Scholar
Hume, R. & Weyers, E. (1973) Changes in leucocyte ascorbic acid during the common cold. Scottish Medical Journal 18, 37.CrossRefGoogle ScholarPubMed
Hurst, J. K. & Barrette, W. C. Jr (1989) Leukocytic oxygen activation and microbicidal oxidative toxins. Critical Reviews in Biochemistry and Molecular Biology 24, 271328.CrossRefGoogle ScholarPubMed
Jackson, J. H. & Cochrane, C. G. (1988) Leukocyte-induced tissue injury. Hematology/Oncology Clinics of North America 2, 317334.CrossRefGoogle ScholarPubMed
Karlowski, T. R., Chalmers, T. C., Frenkel, L. D., Kapikian, A. Z., Lewis, T. L. & Lynch, J. M. (1975) Ascorbic acid for the common cold. A prophylactic and therapeutic trial. Journal of the American Medical Association 231, 10381042.CrossRefGoogle ScholarPubMed
Kettle, A. J. & Winterbourn, C. C. (1990) Superoxide enhances hypochlorous acid production by stimulated human neutrophils. Biochimica et Biophysica Acta 1052, 379385.CrossRefGoogle ScholarPubMed
Kleijnen, J., Riet, G. & Knipschild, P. G. (1989) Vitamine C en verkoudheid; overzicht van een megadosis literatuur. (Vitamin C and the common cold; a review of the megadose literature.) Nederlands Tijdschrift voor Geneeskunde 133, 15321535.Google Scholar
Klenner, F. R. (1951) Massive doses of vitamin C and the virus diseases. Journal of Southern Medicine and Surgery 113, 101107.Google ScholarPubMed
Klenner, F. R. (1971) Observations on the dose and administration of ascorbic acid when employed beyond the range of a vitamin in human pathology. Journal of Applied Nutrition 23, 6188.Google Scholar
Lehrer, R. I., Ganz, T., Selsted, M. E., Babior, B. M. & Curnutte, J. T. (1988) Neutrophils and host defence. Annals of Internal Medicine 109, 127142.CrossRefGoogle Scholar
Lemanske, R. F. Jr, Dick, E. C., Swenson, C. A., Vrtis, R. F. & Busse, W. W. (1989) Rhinovirus upper respiratory infection increases airway hyperreactivity and late asthmatic reactions. Journal of Clinical Investigation 83, 110.CrossRefGoogle ScholarPubMed
Levine, M. (1986) New concepts in the biology and biochemistry of ascorbic acid. New England Journal of Medicine 314, 892902.Google ScholarPubMed
Levine, M. & Morita, K. (1985) Ascorbic acid in endocrine systems. Vitamins and Hormones 42, 164.CrossRefGoogle ScholarPubMed
Luberoff, B. J. (1978) Symptomectomy with vitamin C. A chat with Robert Cathcart, MD. Chemtech 8, 7686.Google Scholar
Ludvigsson, J., Hansson, L. O. & Tibbling, G. (1977) Vitamin C as a preventive medicine against common colds in children. Scandinavian Journal of Infectious Diseases 9, 9198.CrossRefGoogle ScholarPubMed
Merchant, D. J. (1950) The effect of serum on the activity of the polymorphonuclear leukocytes of the guinea pig. Journal of Infectious Diseases 87, 275284.CrossRefGoogle ScholarPubMed
Miller, J. Z., Nance, W. E., Norton, J. A., Wolen, R. L., Griffith, R. S. & Rose, R. J. (1977) Therapeutic effect of vitamin C. A co-twin control study. Journal of the American Medical Association 237, 248251.CrossRefGoogle ScholarPubMed
Mills, C. A. (1949) Bone marrow nutrition in relation to phagocytic activity of blood granulocytes. Blood 4, 150159.Google ScholarPubMed
Mink, K. A., Dick, E. C., Jennings, L. C. & Inhorn, S. L. (1988) Amelioration of rhinovirus colds by vitamin C (ascorbic acid) supplementation. Medical Virology 7, 356.Google Scholar
Murphy, B. L., Krushak, D. H., Maynard, J. E. & Bradley, D. W. (1974) Ascorbic acid (vitamin C) and its effects on parainfluenza type III virus infection in cotton-topped marmosets. Laboratory Animal Science 24, 229232.Google Scholar
Naclerio, R. M., Proud, D., Lichtenstein, L. M., Kagey-Sobotka, A., Hendley, J. O., Sorrentino, J. & Gwaltney, J. M. (1988) Kinins are generated during experimental rhinovirus colds. Journal of Infectious Diseases 157, 133142.CrossRefGoogle ScholarPubMed
Nath, J. & Gallin, J. I. (1983) Studies in normal and chronic granulomatous disease neutrophils indicate a correlation of tubulin tyrosinolation with the cellular redox state. Journal of Clinical Investigation 71, 12731281.CrossRefGoogle ScholarPubMed
Nath, J. & Gallin, J. I. (1987) Effect of vitamin C on tubulin tyrosinolation in polymorphonuclear leukocytes. Annals of the New York Academy of Sciences 498, 216228.CrossRefGoogle ScholarPubMed
National Research Council (1989) Recommended Dietary Allowances 10th ed. Washington, DC: National Academy Press.Google Scholar
Nowak, D., Ruta, U. & Piasecka, G. (1989) Ascorbic acid inhibits polymorphonuclear leukocytes influx to the place of inflammation possible protection of lung from phagocyte-mediated injury. Archivum Immunologiae et Therapiae Experimentalis 37, 213218.Google ScholarPubMed
Nungester, W. J. & Ames, A. M. (1948) The relationship between ascorbic acid and phagocytic activity. Journal of Infectious Diseases 83, 5054.CrossRefGoogle ScholarPubMed
Oda, T., Akaike, T., Hamamoto, T., Suzuki, F., Hirano, T. & Maeda, H. (1989) Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science 244, 974976.CrossRefGoogle ScholarPubMed
Pauling, L. (1970a) Vitamin C and the Common Cold (reprinted in 1976 as Vitamin C, Common Cold, and the Flu). San Francisco: Freeman.Google Scholar
Pauling, L. (1970b) Evolution and the need for ascorbic acid. Proceedings of the National Academy of Sciences, U.S.A. 67, 16431648.CrossRefGoogle ScholarPubMed
Pauling, L. (1971a) The significance of the evidence about ascorbic acid and the common cold. Proceedings of the National Academy of Sciences, U.S.A. 68, 26782681.CrossRefGoogle ScholarPubMed
Pauling, L. (1971b) Ascorbic acid and the common cold. American Journal of Clinical Nutrition 24, 12941299.CrossRefGoogle ScholarPubMed
Pauling, L. (1986) How to Live Longer and Feel Better. San Francisco: Freeman.Google Scholar
Pitt, H. A. & Costrini, A. M. (1979) Vitamin C prophylaxis in marine recruits. Journal of the American Medical Association 241, 908911.CrossRefGoogle ScholarPubMed
Regnier, E. (1968) The administration of large doses of ascorbic acid in the prevention and treatment of the common cold.Part II. Review of Allergy 22, 948956.Google Scholar
Ritzel, G. (1961) Kritische Beurteilung des Vitamins C als Prophylacticum und Therapeuticum der Erkältungskrankheiten. (Critical analysis of the role of vitamin C in the treatment of common cold.) Helvetica Medica Acta 28, 6368.Google Scholar
Ritzel, G. (1976) Ascorbic acid and the common cold. Journal of the American Medical Association 235, 1108.CrossRefGoogle ScholarPubMed
Rivers, J. M. (1987) Safety of high-level vitamin C ingestion. Annals of the New York Academy of Sciences 498, 445454.CrossRefGoogle ScholarPubMed
Sabiston, B. H. & Radomski, M. W. (1974) Health Problems and Vitamin C in Canadian Northern Military Operations. DCIEM Report no. 74-R-1012. Downsview, Ontario: Defence and Civil Institute of Environmental Medicine.Google Scholar
Samuni, A., Aronovitch, J., Godinger, D., Chevion, M. & Czapski, G. (1983) On the cytotoxicity of vitamin C and metal ions. European Journal of Biochemistry 137, 119124.CrossRefGoogle ScholarPubMed
Schwartz, A. R., Togo, Y., Hornick, R. B., Tominaga, S. & Gleckman, R. A. (1973) Evaluation of the efficacy of ascorbic acid in prophylaxis of induced rhinovirus 44 infection in man. Journal of Infectious Diseases 128, 500505.CrossRefGoogle ScholarPubMed
Shilotri, P. G. (1977) Glycolytic, hexose monophosphate shunt and bactericidal activities of leukocytes in ascorbic acid deficient guinea pigs. Journal of Nutrition 107, 15071512.CrossRefGoogle ScholarPubMed
Sperber, S. J. & Hayden, F. G. (1988) Chemotherapy of rhinovirus colds. Antimicrobial Agents and Chemotherapy 32, 409419.CrossRefGoogle ScholarPubMed
Stankova, L., Gerhardt, N. B., Nagel, L. & Bigley, R. H. (1975) Ascorbate and phagocyte function. Infection and Immunity 12, 252256.Google ScholarPubMed
Stendahl, O., Coble, B.-I., Dahlgren, C., Hed, J. & Molin, L. (1984) Myeloperoxidase modulates the phagocytic acitivity of polymorphonuclear neutrophil leukocytes. Journal of Clinical Investigation 73, 366373.CrossRefGoogle Scholar
Stone, I. (1972) The Healing Factor: Vitamin C Against Disease. New York: Grosset & Dunlap.Google Scholar
Subramanian, N. (1978) Histamine degradative potential of ascorbic acid: considerations and evaluations. Agents and Actions 8, 484487.CrossRefGoogle ScholarPubMed
Tannenbaum, S. R. & Wishnok, J. S. (1987) Inhibition of nitrosamine formation by ascorbic acid. Annals of the New York Academy of Sciences 498, 354363.CrossRefGoogle ScholarPubMed
Theron, A. & Anderson, R. (1985) Investigation of the protective effects of the antioxidants ascorbate, cysteine and dapsone on the phagocyte-mediated oxidative inactivation of human alpha-1-protease inhibitor in vitro. Americun Review qf Respiratory Diseases 132, 10491054.Google ScholarPubMed
Thomas, E. L., Learn, D. B., Jefferson, M. M. & Weatherred, W. (1988) Superoxide-dependent oxidation of extracellular reducing agents by isolated neutrophils. Journal of Biological Chemistry 263, 21782186.Google ScholarPubMed
Thomas, W. R. & Holt, P. G. (1978) Vitamin C and immunity: an assessment of the evidence. Clinical and Experimental Immunology 32, 370379.Google Scholar
Truswell, A. S. (1986) Ascorbic acid. New England Journal of Medicine 315, 709.Google Scholar
Tsan, M.-F. (1980) Phorbol myristrate acetate induced neutrophil autotoxicity. Journal of Cellular Physiology 105, 327334.CrossRefGoogle Scholar
Turner, R. B. (1988) Rhinovirus infection of human embryonic lung fibroblasts induces the production of a chemoattractant for polymorphonuclear leukocytes. Journal of Infectious Diseases 157, 346350.CrossRefGoogle ScholarPubMed
Turner, R. B., Hendley, J. O. & Gwaltney, J. M. Jr. (1982) Shedding of infected ciliated epithelial cells in rhinovirus colds. Journal of Infectious Diseases 145, 849853.CrossRefGoogle ScholarPubMed
Tyrrell, D. A. J., Craig, J. W., Meade, T. W. & White, T. (1977) A trial of ascorbic acid in the treatment of the common cold. British Journal of Preventive and Social Medicine 31, 189191.Google ScholarPubMed
Wang, Y. & Ness, B. V. (1989) Site-specific cleavage of supercoiled DNA by ascorbate/Cu(II). Nucleic Acids Research 17, 69156926.CrossRefGoogle Scholar
Ward, P. A. & Varani, J. (1990) Mechanisms of neutrophil-mediated killing of endothelial cells. Journal of Leukocyte Biology 48, 97102.CrossRefGoogle ScholarPubMed
Washko, P., Rotrosen, D. & Levine, M. (1989) Ascorbic acid transport and accumulation in human neutrophils. Journal of Biological Chemistry 264, 1899619002.Google ScholarPubMed
Weiss, S. J. (1989) Tissue destruction by neutrophils. New England Journal of Medicine 320, 365376.Google ScholarPubMed
Welliver, R. C., Wong, D. T., Sun, M., Middleton, E., Vaughan, R. S. & Ogra, P. L. (1981) The development of respiratory syncytial virus-specific IgE and the release of histamine in nasopharyngeal secretions after infection. New England Journal of Medicine 305, 841846.CrossRefGoogle ScholarPubMed
Wilson, C. W. M. (1975) Ascorbic acid function and metabolism during colds. Annals of the New York Academy of Sciences 258, 529539.CrossRefGoogle ScholarPubMed
Winterbourn, C. C. & Vissers, M. C. M. (1983) Changes in ascorbate levels on stimulation of human neutrophils. Biochimica et Biophysica Acta 763, 175179.CrossRefGoogle ScholarPubMed
Winther, B., Brofeldt, S., Christensen, B. & Mygind, N. (1984a) Light and scanning electron microscopy of nasal biopsy material from patients with naturally acquired common colds. Acta Otolaryngologica 97, 309318.CrossRefGoogle ScholarPubMed
Winther, B., Farr, B., Turner, R. B., Hendley, J. O., Gwaltney, J. M. Jr. & Mygind, N. (1984b) Histopathologic examination and enumeration of polymorphonuclear leukocytes in the nasal mucosa during experimental rhinovirus colds. Acta Otolaryngologica Suppl.413, 1924.CrossRefGoogle ScholarPubMed
Winther, B., Gwaltney, J. M. & Hendley, J. O. (1990) Respiratory virus infection of monolayer cultures of human nasal epithelial cells. American Review of Respiratory Diseases 141, 839845.CrossRefGoogle ScholarPubMed
You have Access
88
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Vitamin C and the common cold
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Vitamin C and the common cold
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Vitamin C and the common cold
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *