Skip to main content

Vitamin D signalling in adipose tissue

  • Cherlyn Ding (a1), Dan Gao (a1), John Wilding (a1), Paul Trayhurn (a1) (a2) and Chen Bing (a1)...

Vitamin D deficiency and the rapid increase in the prevalence of obesity are both considered important public health issues. The classical role of vitamin D is in Ca homoeostasis and bone metabolism. Growing evidence suggests that the vitamin D system has a range of physiological functions, with vitamin D deficiency contributing to the pathogenesis of several major diseases, including obesity and the metabolic syndrome. Clinical studies have shown that obese individuals tend to have a low vitamin D status, which may link to the dysregulation of white adipose tissue. Recent studies suggest that adipose tissue may be a direct target of vitamin D. The expression of both the vitamin D receptor and 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1) genes has been shown in murine and human adipocytes. There is evidence that vitamin D affects body fat mass by inhibiting adipogenic transcription factors and lipid accumulation during adipocyte differentiation. Some recent studies demonstrate that vitamin D metabolites also influence adipokine production and the inflammatory response in adipose tissue. Therefore, vitamin D deficiency may compromise the normal metabolic functioning of adipose tissue. Given the importance of the tissue in energy balance, lipid metabolism and inflammation in obesity, understanding the mechanisms of vitamin D action in adipocytes may have a significant impact on the maintenance of metabolic health. In the present review, we focus on the signalling role of vitamin D in adipocytes, particularly the potential mechanisms through which vitamin D may influence adipose tissue development and function.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Vitamin D signalling in adipose tissue
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Vitamin D signalling in adipose tissue
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Vitamin D signalling in adipose tissue
      Available formats
Corresponding author
*Corresponding author: Dr C. Bing, fax +44 151 7065802, email
Hide All
1Mellanby, E (1976) Nutrition Classics. The Lancet 1: 407–12, 1919. An experimental investigation of rickets. Edward Mellanby. Nutr Rev 34, 338340.
2Boyle, IT, Miravet, L, Gray, RW, et al. (1972) The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxy vitamin D in nephrectomized rats. Endocrinology 90, 605608.
3Tanaka, Y, Frank, H & DeLuca, HF (1973) Biological activity of 1,25-dihydroxyvitamin D3 in the rat. Endocrinology 92, 417422.
4Liu, PT, Stenger, S, Li, H, et al. (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311, 17701773.
5Wang, TT, Nestel, FP, Bourdeau, V, et al. (2004) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173, 29092912.
6Chen, S, Law, CS, Grigsby, CL, et al. (2011) Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation 124, 18381847.
7Zhang, Y, Kong, J, Deb, DK, et al. (2010) Vitamin D receptor attenuates renal fibrosis by suppressing the renin–angiotensin system. J Am Soc Nephrol 21, 966973.
8Chiu, KC, Chu, A, Go, VLW, et al. (2004) Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr 79, 820825.
9Vrieling, A, Hein, R, Abbas, S, et al. (2011) Serum 25-hydroxyvitamin D and postmenopausal breast cancer survival: a prospective patient cohort study. Breast Cancer Res 13, R74.
10Barchetta, I, Angelico, F, Del Ben, M, et al. (2011) Strong association between non alcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes. BMC Med 9, 85.
11Osei, K (2010) 25-OH vitamin D: is it the universal panacea for metabolic syndrome and type 2 diabetes? J Clin Endocrinol Metab 95, 42204222.
12Bell, NH, Epstein, S, Greene, A, et al. (1985) Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest 76, 370373.
13Wortsman, J, Matsuoka, LY, Chen, TC, et al. (2000) Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 72, 690693.
14Parikh, SJ, Edelman, M, Uwaifo, GI, et al. (2004) The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab 89, 11961199.
15Snijder, MB, van Dam, RM, Visser, M, et al. (2005) Adiposity in relation to vitamin D status and parathyroid hormone levels: a population-based study in older men and women. J Clin Endocrinol Metab 90, 41194123.
16Botella-Carretero, JI, Alvarez-Blasco, F, Villafruela, JJ, et al. (2007) Vitamin D deficiency is associated with the metabolic syndrome in morbid obesity. Clin Nutr 26, 573580.
17Goldner, WS, Stoner, JA, Thompson, J, et al. (2008) Prevalence of vitamin D insufficiency and deficiency in morbidly obese patients: a comparison with non-obese controls. Obes Surg 18, 145150.
18Blum, M, Dolnikowski, G, Seyoum, E, et al. (2008) Vitamin D(3) in fat tissue. Endocrine 33, 9094.
19Ching, S, Kashinkunti, S, Niehaus, MD, et al. (2011) Mammary adipocytes bioactivate 25-hydroxyvitamin D and signal via vitamin D receptor, modulating mammary epithelial cell growth. J Cell Biochem 112, 33933405.
20Wong, KE, Kong, J, Zhang, W, et al. (2011) Targeted expression of human vitamin D receptor in adipocytes decreases energy expenditure and induces obesity in mice. J Biol Chem 286, 3380433810.
21Li, J, Byrne, ME, Chang, E, et al. (2008) 1Alpha,25-dihydroxyvitamin D hydroxylase in adipocytes. J Steroid Biochem Mol Biol 112, 122126.
22Kong, J & Li, YC (2006) Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab 290, E916E924.
23Kamei, Y, Kawada, T, Kazuki, R, et al. (1993) Vitamin D receptor gene expression is up-regulated by 1,25-dihydroxyvitamin D3 in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 193, 948955.
24Windaus, A, Linsert, O, Lüttringhaus, A, et al. (1932) Über das krystallisierte Vitamin D2 (About the crystallized vitamin D2). Justus Liebigs Annalen der Chemie 492, 226241.
25Windaus, A, Schenck, F & von Weder, F (1936) Uber das antirachitisch wirksame bestrahlungs-produkt aus 7-dehydro-cholesterin (About the anti-rachitic effective irradiation-product of 7-dehydro-cholesterol). Hoppe-Seylers Z Physiol Chem 241, 100103.
26Masuda, S, Byford, V, Arabian, A, et al. (2005) Altered pharmacokinetics of 1alpha,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 in the blood and tissues of the 25-hydroxyvitamin D-24-hydroxylase (Cyp24a1) null mouse. Endocrinology 146, 825834.
27Xu, Y, Hashizume, T, Shuhart, MC, et al. (2006) Intestinal and hepatic CYP3A4 catalyze hydroxylation of 1alpha,25-dihydroxyvitamin D(3): implications for drug-induced osteomalacia. Mol Pharmacol 69, 5665.
28Jones, G, Strugnell, SA & DeLuca, HF (1998) Current understanding of the molecular actions of vitamin D. Physiol Rev 78, 11931231.
29Demay, MB (2006) Mechanism of vitamin D receptor action. Ann N Y Acad Sci 1068, 204213.
30Mangelsdorf, DJ, Thummel, C, Beato, M, et al. (1995) The nuclear receptor superfamily: the second decade. Cell 83, 835839.
31Issa, LL, Leong, GM & Eisman, JA (1998) Molecular mechanism of vitamin D receptor action. Inflamm Res 47, 451475.
32Carlberg, C (2003) Current understanding of the function of the nuclear vitamin D receptor in response to its natural and synthetic ligands. Recent Results Cancer Res 164, 2942.
33Sutton, ALM & MacDonald, PN (2003) Vitamin D: more than a “bone-a-fide” hormone. Mol Endocrinol 17, 777791.
34Huhtakangas, JA, Olivera, CJ, Bishop, JE, et al. (2004) The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1α,25(OH)2-vitamin D3in vivo and in vitro. Mol Endocrinol 18, 26602671.
35Norman, AW (2006) Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology 147, 55425548.
36Plum, LA & DeLuca, HF (2010) Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov 9, 941955.
37Dretakis, OE, Tsatsanis, C, Fyrgadis, A, et al. (2010) Correlation between serum 25-hydroxyvitamin D levels and quadriceps muscle strength in elderly Cretans. J Int Med Res 38, 18241834.
38Baz-Hecht, M & Goldfine, AB (2010) The impact of vitamin D deficiency on diabetes and cardiovascular risk. Curr Opin Endocrinol Diabetes Obes 17, 113119.
39Yiu, YF, Chan, YH, Yiu, KH, et al. (2011) Vitamin D deficiency is associated with depletion of circulating endothelial progenitor cells and endothelial dysfunction in patients with type 2 diabetes. J Clin Endocrinol Metab 96, E830E835.
40 Barth JH, Butler GE, Hammond PJ. (2008) Hypercalcaemia. In Biochemical Investigations in Laboratory Medicine. Leeds Teaching Hospitals.
41Jones, G (2008) Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr 88, 582S586S.
42Holick, MF (2009) Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol 19, 7378.
43Holick, MF (2011) Vitamin D: evolutionary, physiological and health perspectives. Curr Drug Targets 12, 418.
44Dawson-Hughes, B, Heaney, RP, Holick, MF, et al. (2005) Estimates of optimal vitamin D status. Osteoporos Int 16, 713716.
45Khandalavala, BN, Hibma, PP & Fang, X (2010) Prevalence and persistence of vitamin D deficiency in biliopancreatic diversion patients: a retrospective study. Obes Surg 20, 881884.
46Fish, E, Beverstein, G, Olson, D, et al. (2010) Vitamin D status of morbidly obese bariatric surgery patients. J Surg Res 164, 198202.
47Ford, ES, Ajani, UA, McGuire, LC, et al. (2005) Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. Diabetes Care 28, 12281230.
48Konradsen, S, Ag, H, Lindberg, F, et al. (2008) Serum 1,25-dihydroxy vitamin D is inversely associated with body mass index. Eur J Nutr 47, 8791.
49Cheng, S, Massaro, JM, Fox, CS, et al. (2010) Adiposity, cardiometabolic risk, and vitamin D status: the Framingham Heart Study. Diabetes 59, 242248.
50Rajakumar, K, de las Heras, J, Chen, TC, et al. (2011) Vitamin D status, adiposity, and lipids in black American and Caucasian children. J Clin Endocrinol Metab 96, 15601567.
51Jorde, R, Sneve, M, Emaus, N, et al. (2010) Cross-sectional and longitudinal relation between serum 25-hydroxyvitamin D and body mass index: the Tromso study. Eur J Nutr 49, 401407.
52Freedman, BI, Wagenknecht, LE, Hairston, KG, et al. (2010) Vitamin D, adiposity, and calcified atherosclerotic plaque in African-Americans. J Clin Endocrinol Metab 95, 10761083.
53Caron-Jobin, M, Morisset, AS, Tremblay, A, et al. (2011) Elevated serum 25(OH)D concentrations, vitamin D, and calcium intakes are associated with reduced adipocyte size in women. Obesity (Silver Spring) 19, 13351341.
54Rosenblum, JL, Castro, VM, Moore, CE, et al. (2012) Calcium and vitamin D supplementation is associated with decreased abdominal visceral adipose tissue in overweight and obese adults. Am J Clin Nutr 95, 101108.
55Frost, M, Abrahamsen, B, Nielsen, TL, et al. (2010) Vitamin D status and PTH in young men: a cross-sectional study on associations with bone mineral density, body composition and glucose metabolism. Clin Endocrinol (Oxf) 73, 573580.
56Kayaniyil, S, Vieth, R, Harris, SB, et al. (2011) Association of 25(OH)D and PTH with metabolic syndrome and its traditional and nontraditional components. J Clin Endocrinol Metab 96, 168175.
57Narvaez, CJ, Matthews, D, Broun, E, et al. (2009) Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue. Endocrinology 150, 651661.
58Ochs-Balcom, HM, Chennamaneni, R, Millen, AE, et al. (2011) Vitamin D receptor gene polymorphisms are associated with adiposity phenotypes. Am J Clin Nutr 93, 510.
59O'Hara, A, Lim, FL, Mazzatti, DJ, et al. (2009) Microarray analysis identifies matrix metalloproteinases (MMPs) as key genes whose expression is up-regulated in human adipocytes by macrophage-conditioned medium. Pflugers Arch 458, 11031114.
60Trayhurn, P, O'Hara, A & Bing, C (2011) Interrogation of microarray datasets indicates that macrophage-secreted factors stimulate the expression of genes associated with vitamin D metabolism (VDR and CYP27B1) in human adipocytes. Adipobiology 3, 2934.
61Querfeld, U, Hoffmann, MM, Klaus, G, et al. (1999) Antagonistic effects of vitamin D and parathyroid hormone on lipoprotein lipase in cultured adipocytes. J Am Soc Nephrol 10, 21582164.
62Bikle, D (2009) Extra renal synthesis of 1,25-dihydroxyvitamin D and its health implications. Clin Rev Bone Miner Metab 7, 114125.
63Xu, H, Barnes, GT, Yang, Q, et al. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112, 18211830.
64Weisberg, SP, McCann, D, Desai, M, et al. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112, 17961808.
65Blumberg, JM, Tzameli, I, Astapova, I, et al. (2006) Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 Cells. J Biol Chem 281, 1120511213.
66Mandrup, S & Lane, MD (1997) Regulating adipogenesis. J Biol Chem 272, 53675370.
67Christy, RJ, Yang, VW, Ntambi, JM, et al. (1989) Differentiation-induced gene expression in 3T3-L1 preadipocytes: CCAAT/enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes. Genes Dev 3, 13231335.
68Dani, C, Amri, EZ, Bertrand, B, et al. (1990) Expression and regulation of pOb24 and lipoprotein lipase genes during adipose conversion. J Cell Biochem 43, 103110.
69Madsen, L, Petersen, RK & Kristiansen, K (2005) Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim Biophys Acta 1740, 266286.
70Lee, S, Lee, DK, Choi, E, et al. (2005) Identification of a functional vitamin D response element in the murine Insig-2 promoter and its potential role in the differentiation of 3T3-L1 preadipocytes. Mol Endocrinol 19, 399408.
71Rayalam, S, Della-Fera, MA, Ambati, S, et al. (2008) Enhanced effects of 1,25(OH)(2)D(3) plus genistein on adipogenesis and apoptosis in 3T3-L1 adipocytes. Obesity (Silver Spring) 16, 539546.
72Wong, KE, Szeto, FL, Zhang, W, et al. (2009) Involvement of the vitamin D receptor in energy metabolism: regulation of uncoupling proteins. Am J Physiol Endocrinol Metab 296, E820E828.
73Boon, N, Hul, GB, Sicard, A, et al. (2006) The effects of increasing serum calcitriol on energy and fat metabolism and gene expression. Obesity (Silver Spring) 14, 17391746.
74Trayhurn, P, Bing, C & Wood, IS (2006) Adipose tissue and adipokines – energy regulation from the human perspective. J Nutr 136, 1935S1939S.
75Trayhurn, P & Wood, IS (2004) Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 92, 347355.
76Gannagé-Yared, M-H, Chedid, R, Khalife, S, et al. (2009) Vitamin D in relation to metabolic risk factors, insulin sensitivity and adiponectin in a young middle-eastern population. Eur J Endocrinol 160, 965971.
77Sun, X & Zemel, MB (2008) Calcitriol and calcium regulate cytokine production and adipocyte–macrophage cross-talk. J Nutr Biochem 19, 392399.
78Lira, FS, Rosa, JC, Cunha, CA, et al. (2011) Supplementing alpha-tocopherol (vitamin E) and vitamin D3 in high fat diet decrease IL-6 production in murine epididymal adipose tissue and 3T3-L1 adipocytes following LPS stimulation. Lipids Health Dis 10, 37.
79Lorente-Cebrian, S, Eriksson, A, Dunlop, T, et al. (2011) Differential effects of 1alpha,25-dihydroxycholecalciferol on MCP-1 and adiponectin production in human white adipocytes. Eur J Nutr 51, 335342.
80Inoue, M, Matsui, T, Nishibu, A, et al. (1998) Regulatory effects of 1alpha,25-dihydroxyvitamin D3 on inflammatory responses in psoriasis. Eur J Dermatol 8, 1620.
81Do, JE, Kwon, SY, Park, S, et al. (2008) Effects of vitamin D on expression of Toll-like receptors of monocytes from patients with Behcet's disease. Rheumatology (Oxford) 47, 840848.
82Martinesi, M, Treves, C, d'Albasio, G, et al. (2008) Vitamin D derivatives induce apoptosis and downregulate ICAM-1 levels in peripheral blood mononuclear cells of inflammatory bowel disease patients. Inflamm Bowel Dis 14, 597604.
83Zhang, Y, Leung, DY, Richers, BN, et al. (2012) Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol 188, 21272135.
84Bruce, D, Yu, S, Ooi, JH, et al. (2011) Converging pathways lead to overproduction of IL-17 in the absence of vitamin D signaling. Int Immunol 23, 519528.
85Yu, S, Bruce, D, Froicu, M, et al. (2008) Failure of T cell homing, reduced CD4/CD8alphaalpha intraepithelial lymphocytes, and inflammation in the gut of vitamin D receptor KO mice. Proc Natl Acad Sci U S A 105, 2083420839.
86Giulietti, A, van Etten, E, Overbergh, L, et al. (2007) Monocytes from type 2 diabetic patients have a pro-inflammatory profile. 1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract 77, 4757.
87Lee, V, Rekhi, E, Kam, JH, et al. (2012) Vitamin D rejuvenates aging eyes by reducing inflammation, clearing amyloid beta and improving visual function. Neurobiol Aging 33, 23822389.
88Fontana, L, Eagon, JC, Trujillo, ME, et al. (2007) Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56, 10101013.
89Skurk, T, Alberti-Huber, C, Herder, C, et al. (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92, 10231033.
90Cinti, S, Mitchell, G, Barbatelli, G, et al. (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46, 23472355.
91Lolmede, K, Duffaut, C, Zakaroff-Girard, A, et al. (2011) Immune cells in adipose tissue: key players in metabolic disorders. Diabetes Metab 37, 283290.
92Lacasa, D, Taleb, S, Keophiphath, M, et al. (2007) Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes. Endocrinology 148, 868877.
93Keophiphath, M, Achard, V, Henegar, C, et al. (2009) Macrophage-secreted factors promote a profibrotic phenotype in human preadipocytes. Mol Endocrinol 23, 1124.
94Gao, D, Trayhurn, P & Bing, C (2010) Macrophage-secreted factors inhibit ZAG expression and secretion by human adipocytes. Mol Cell Endocrinol 325, 135142.
95Gao, D & Bing, C (2011) Macrophage-induced expression and release of matrix metalloproteinase 1 and 3 by human preadipocytes is mediated by IL-1β via activation of MAPK signaling. J Cell Physiol 226, 28692880.
96Gao, D, Trayhurn, P & Bing, C (2012) Dihydroxyvitamin D3 inhibits the cytokine-induced secretion of MCP-1 and reduces monocyte recruitment by human preadipocytes. Int J Obes (Lond) (Epublication ahead of print version 17 April 2012).
97Fujihara, CK, Antunes, GR, Mattar, AL, et al. (2007) Chronic inhibition of nuclear factor-κB attenuates renal injury in the 5/6 renal ablation model. Am J Physiol Renal Physiol 292, F92F99.
98Chen, Y, Kong, J, Sun, T, et al. (2011) 1,25-Dihydroxyvitamin D3 suppresses inflammation-induced expression of plasminogen activator inhibitor-1 by blocking nuclear factor-κB activation. Arch Biochem Biophys 507, 241247.
99Bonizzi, G & Karin, M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25, 280288.
100Zhang, Z, Yuan, W, Sun, L, et al. (2007) 1,25-Dihydroxyvitamin D3 targeting of NF-kappaB suppresses high glucose-induced MCP-1 expression in mesangial cells. Kidney Int 72, 193201.
101Scragg, R, Holdaway, I, Singh, V, et al. (1995) Serum 25-hydroxyvitamin D3 levels decreased in impaired glucose tolerance and diabetes mellitus. Diabetes Res Clin Pract 27, 181188.
102Parikh, S, Guo, D-H, Pollock, NK, et al. (2012) Circulating 25-hydroxyvitamin D concentrations are correlated with cardiometabolic risk among American Black and White adolescents living in a year-round sunny climate. Diabetes Care 35, 11331138.
103Olson, ML, Maalouf, NM, Oden, JD, et al. (2012) Vitamin D deficiency in obese children and its relationship to glucose homeostasis. J Clin Endocrinol Metab 97, 279285.
104Kayaniyil, S, Retnakaran, R, Harris, SB, et al. (2011) Prospective associations of vitamin D with β-cell function and glycemia. Diabetes 60, 29472953.
105Billaudel, BJ, Bourlon, PM, Sutter, BC, et al. (1995) Regulatory effect of 1,25-dihydroxyvitamin D3 on insulin release and calcium handling via the phospholipid pathway in islets from vitamin D-deficient rats. J Endocrinol Invest 18, 673682.
106Cade, C & Norman, AW (1987) Rapid normalization/stimulation by 1,25-dihydroxyvitamin D3 of insulin secretion and glucose tolerance in the vitamin D-deficient rat. Endocrinology 120, 14901497.
107Mitri, J, Dawson-Hughes, B, Hu, FB, et al. (2011) Effects of vitamin D and calcium supplementation on pancreatic beta cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am J Clin Nutr 94, 486494.
108Nikooyeh, B, Neyestani, TR, Farvid, M, et al. (2011) Daily consumption of vitamin D −  or vitamin D+calcium-fortified yogurt drink improved glycemic control in patients with type 2 diabetes: a randomized clinical trial. Am J Clin Nutr 93, 764771.
109Maestro, B, Molero, S, Bajo, S, et al. (2002) Transcriptional activation of the human insulin receptor gene by 1,25-dihydroxyvitamin D(3). Cell Biochem Funct 20, 227232.
110Hotamisligil, GS (2000) Molecular mechanisms of insulin resistance and the role of the adipocyte. Int J Obes Relat Metab Disord 24, Suppl. 4, S23S27.
111Smith, U (2002) Impaired (‘diabetic’) insulin signaling and action occur in fat cells long before glucose intolerance – is insulin resistance initiated in the adipose tissue? Int J Obes Relat Metab Disord 26, 897904.
112Calle, C, Maestro, B & Garcia-Arencibia, M (2008) Genomic actions of 1,25-dihydroxyvitamin D3 on insulin receptor gene expression, insulin receptor number and insulin activity in the kidney, liver and adipose tissue of streptozotocin-induced diabetic rats. BMC Mol Biol 9, 65.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 186
Total number of PDF views: 910 *
Loading metrics...

Abstract views

Total abstract views: 1591 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 15th August 2018. This data will be updated every 24 hours.