Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T14:25:48.063Z Has data issue: false hasContentIssue false

Role of reproductive biotechnologies: global perspective, current methods and success rates

Published online by Cambridge University Press:  27 February 2018

M. Thibier
Affiliation:
Conseil Général Vétérinaire, Ministère de l’Agriculture, de l’Alimentation, de la Pêche et des Affaires Rurales, Paris, France
P. Humblot
Affiliation:
UNCEIA, Services Techniques, 13 Rue Jouët, 94703 Maisons Alfort, France
B. Guerin
Affiliation:
UNCEIA, Services Techniques, 13 Rue Jouët, 94703 Maisons Alfort, France
Get access

Abstract

Artificial Insemination (AI), the first generation of Reproductive Biotechnologies (RB), is widely used in cattle with more than 110 million females, accounting for 20% of the total global population of breeding females, inseminated annually. There is still great potential for expansion, but further increases will depend on improved conception rates on commercial premises. AI is also used in sheep and goats but to a much lesser extent. AI in pigs has become increasing popular in recent years (close to 50%) with further expansion (around 10% or more) expected in the next decade. The major challenge for AI in the years to come is to reduce the cost of the offspring that are produced. Irrespective of the species, the key element determining this cost is the percentage of inseminations that result in viable offspring. In vivo collected embryo transfer has also been widely used across the world but to a much lesser extent than AI. In cattle around 500,000 embryos are transferred annually, generating an active international exchange of germplasm. Technical limitations associated with variability in superovulatory responses between individuals will limit further uptake of this technology. In contrast, in vitro embryo production, particularly in the bovine, has greater potential for expansion due to its ability to (1) generate a large number of offspring, (2) reduce costs of embryo production, (3) facilitate adoption of nuclear transfer and transgenesis and (4) regulate and minimise potential hazards associated with disease transmission. A remaining factor limiting uptake of this technology is the achievement of satisfactory pregnancy rates following the transfer of cryopreserved embryos, although recent developments suggest these problems can be overcome. Nuclear transfer and transgenesis present numerous opportunities for genetic conservation, but are still very much at the experimental stage. Genetically modified animals may only be tolerated by society if they lead to benefits in human health or to the environment. Emphasis should be directed to disease resistance in relation to both animal and zoonotic diseases.

Type
Section 3: Reproductive techniques to support conservation
Copyright
Copyright © British Society of Animal Science 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Althouse, G.C., Wilson, M.E., Kuster, C. and Parsey, M. 1998. Characterization of lower temperature strorage limitations of fresh extended porcine semen. Theriogenology 50: 535543.Google Scholar
Boichard, D, and Manfredim, E. 1995. Analyse génétique du taux de conception en population Holstein. Elevage et Insémination 269: 111.Google Scholar
Campbell, K.H.S., Alberio, R., Lee, J-H. and Ritchie, W.A. 2002. Nuclear transfer in practice. Cloning and Stem Cells 3: 201208.Google Scholar
Chevallier, A. and Humblot, P. 1998. Evolution of non return rates after AI: effects of controlling the interval between calving and first AI on fertility results. Rencontres Recherches sur les Ruminants 5: 7577. (Institut Technique de l’Elevage, Paris, France).Google Scholar
Denning, C., Dickinson, P., Burl, S., Wylie, D., Fletcher, J. and Clark, A.J. 2002. Gene targeting in primary fetal fibroblasts from sheep and pig. Cloning and Stem Cells 3: 221231.CrossRefGoogle Scholar
Eriksson, B.M., Petersson, H., Rodriguez-Martinez, H. 2002. Field fertility with exported boar semen frozen in the new FlatPack Container. Theriogenology 58: 10651079.CrossRefGoogle ScholarPubMed
Evans, G. and Maxwell, W.M.C. 2000. Current status of embryo transfer and artificial insemination technology in small ruminants. In: Proceedings, Reproduction in Small Ruminants. Sandnes, Norway, 30 June-1 July 2000. Edited by Engeland, I and Steel, C. pp. 5459.Google Scholar
Gerard, O., Goiset, C., Boffety, F. and Humblot, P. 1998. Utilisation de la semence fraîche pour optimiser la diffusion du progrès génétique dans l’espèce bovine. Rencontres Recherches sur les Ruminants 5: 4548. (Institut Technique de l’Elevage, Paris, France).Google Scholar
Guyader-Joly, C., Durand, M., Morel, A., Ponchon, S., Marquant LeGuienne, B. Guérin, B. and Humblot, P. 2000. Source of variation in blastocysts production in a commercial ovum pick up in vitro embryo production program in dairy cattle. Theriogenology 53: 355 (Abstract).Google Scholar
Heyman, Y. 2002. European embryo transfer statistics. In: Proceedimgs of the 18th meeting of the Association Européenne de Transfert Embryonnaire (AETE), pp. 7579.Google Scholar
Houdebine, L.M. 1999. La transgénèse animale. In: Colloque scientifique de l’AFSSA: Biotechnologies de la reproduction animale et sécurité sanitaire des aliments, Paris 29 Septembre 1999, Edited by Thibier, M. AFFSA Publications, Maisons Alfort, France. pp. 2933.Google Scholar
Humblot, P. and Denis, J.B.D. 1986. Sire effect on cow fertility and embryonic mortality in the Montbeliarde breed. Livestock Production Science 14: 139148.Google Scholar
Humblot, P. 2000. The frequency and variation of embryonic mortality and the use of pregnancy specific proteins to monitor pregnancy failure in ruminants. In: Proceedings of the 3rd ESDAR meeting. Reproduction in Domestic Ruminants Suppl. 6: 1927.Google Scholar
Humblot, P. 2001. Use of pregnancy specific proteins and progesterone assays to monitor pregnancy and determine the timing, frequencies and sources of embryonic mortality in ruminants. Theriogenology 56: 14171433.Google Scholar
Humblot, P. 2001. Les biotechnologies de la reproduction: répondre aux choix de demain. Bulletin Technique de l’Insémination Artificelle 100: 3842.Google Scholar
Juonala, T., Lintukangas, K., Nurtilla, T. and Andersson, M. 1998. Relationship between semen quality and fertility in 106 AI boars. Reproduction in Domestic Animals 33: 155158.Google Scholar
Leboeuf, B., Brice, G., Baril, G., Broqua, C., Bonne, J.L., Humblot, P. and Terqui, M. 1998. Importance of female selection to improve fertility after goat AI. Rencontres Recherches sur les Ruminants 5: 7174.Google Scholar
Marquant-LeGuienne, B., Guyader-Joly, C., Ponchon, S., Delalleau, N., Florin, B., Ede, P., Ponsart, P., Guérin, B. and Humblot, P. 2001. Results of in vitro production in a commercial ovum pick up program. Theriogenology 55: 433 (Abstract).Google Scholar
Morris, L.H.A. and Allen, W.R. 2002. An overview of low dose insemination in the Mare. Reproduction in Domestic Animals 37: 206210.CrossRefGoogle ScholarPubMed
Nibart, M. and Humblot, P. 1997. Pregnancy rates following direct transfer of glycerol glucose or ethylene glucose cryopreserved bovine embryos. Theriogenology 47: 371 (Abstract).Google Scholar
Paulenz, H., Adnoy, T. and Fossen, O.H. 2000. Comparison of vaginal and cervical insemination with fresh semen in Norwegian ewes using two different sperm numbers. In: Proceedings, Reproduction in Small Ruminants. Sandnes, Norway, 30 June-1 July 2000. Edited by Engeland, I and Steel, C. p. 85.Google Scholar
Rath, D. 2002 Low dose insemination in the sow. A review. Reproduction in Domestic Animals 37:201205.Google Scholar
Renard, J.P. 1999. Production de mammifères domestiques par clonage. In: Colloque scientifique de l’AFSSA: Biotechnologies de la reproduction animale et sécurité sanitaire des aliments, Paris 29 Septembre 1999, Edited by Thibier, M. AFFSA Publiccations, Maisons Alfort, France. pp. 2327.Google Scholar
Rostand, J. 1941. Congélation prolongée des cellules fécondantes. In: La Vie, Edited by Rostand, J. and Tétry, A.. 1962. Larrousse, Paris. p. 144.Google Scholar
Rostand, J. 1946. Glycérine et résistance du sperme aux basses températures. C.R. Acad. Sci. 22: 15241525.Google Scholar
Thibier, M. 1987. L’Insémination Artificielle dans l’espèce bovine, moyen privilégié” d’améliorer l’efficacité de la reproduction. Manuel pour l’Eleveur de Bovins. 9: 718. ITEB Publications, Paris, France.Google Scholar
Thibier, M. 1993. Analyse critique des services d’insémination artificielle dans les pays en voie de développement. In : Amélioration génétique des Bovins en Afrique de l’Ouest. Etudes FAO - Production et Santé Animales N° 110: 91106 ; FAO Ed. Rome, Italy.Google Scholar
Thibier, M. 1999. Les Biotechnologies de la reproduction et la sécurité sanitaire des aliments. In: Colloque scientifique de l’AFSSA: Biotechnologies de la reproduction animale et sécurité sanitaire des aliments, Paris 29 Septembre 1999, Edited by Thibier, M. AFFSA Publications, Maisons Alfort, France. pp. 78.Google Scholar
Thibier, M. 2002. A contrasted year from the world activity of the animal embryo transfer industry – A report from the IETS Data Retrieval Committee. IETS Newsletter 20(4) (in press).Google Scholar
Thibier, M. and Guérin, B. 2000. Embryo transfer in small ruminants, the method of choice for health control in germplasm exchanges. Livestock Production Science 62: 253270.Google Scholar
Thibier, M. and Wagner, H.G. 2001. World Statistics for artificial insemination in cattle. Livestock Production Science 74: 203212.Google Scholar
Thilmant, P. 2001. Congélation du sperme de verrat en paillettes fines de 0.25 ml. Journées de la Recherche Porcine de France 33: 151156.Google Scholar
Wagner, H.G. and Thibier, M. 2000. World statistics for artificial insemination in small ruminants and swine. In: Proceedings of the 14th International Congress on Animal Reproduction, July 2000, Stockholm. Abstracts book, vol 2, n° 15:3, p. 77.Google Scholar
Weitze, K.F. 2000. Update on the worldwide application of swine AI. Boar Semen Preservation IV, 141-145.Google Scholar
Wells, D.N., Missica, P.M., Forsyth, J.T., Beg, M.C., Lange, J.M., Tervit, H.R. and Vivanco, W.H., 1999. The use of adult somatic cell nuclear transfer to preserve the last surviving cow of the Enderby Island cattle breed. Theriogenonology 51: 217 (Abstract).Google Scholar